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ABSTRACT: Each year, the growth of cities across developing economies in Asia, Africa,
and Latin America drives demand for concrete to house and serve their burgeoning
populations. Since 1950, the number of people living in urban areas has quadrupled to 4.2
billion, with another predicted 2.5 billion expected to join them in the next three decades.
The largest component of concrete by volume is aggregates, such as sand and rocks, with
sand as the most mined material in the world. However, the extraction rate of sand currently
exceeds its natural replenishment rate, meaning that a global concrete-suitable sand shortage
is extremely likely. As such, replacements for fine aggregates, such as sand, are in demand.
Here, flash Joule heating (FJH) is used to convert coal-derived metallurgical coke (MC) into
flash graphene aggregate (FGA), a blend of MC-derived flash graphene (MCFG), which
mimics a natural aggregate (NA) in size. While graphene and graphene oxide have previously been used as reinforcing additives to
concrete, in this contribution, FGA is used as a total aggregate replacement for NA, resulting in 25% lighter concrete with increases
in toughness, peak strain, and specific compressive strength of 32, 33, and 21%, respectively, with a small reduction in specific
Young’s modulus of 11%. FJH can potentially enable the replacement of fine NA with FGA, resulting in lighter, stronger concrete.
KEYWORDS: flash Joule heating, flash graphene, concrete, aggregate replacement, construction materials

1. INTRODUCTION
Concrete is the second most consumed material worldwide,
after water.1,2 Its ease of use and impressive mechanical
properties have literally laid the foundation for modern
civilization. Concrete usage is twice that of steel, wood,
plastics, and aluminum combined.1 Typically, concrete is
composed of fine or coarse aggregates, such as sand or gravel,
which are bonded with cement and water and cured over
time.3 However, production of concrete imposes substantial
environmental impacts, through both production of cement
and the use of aggregates.
Cement production accounts for 8% of worldwide CO2

emissions, primarily due to the thermal decomposition of
calcium carbonate to generate metal oxides and CO2 and the
fossil fuels combusted during the process.4,5 Production of 1 t
of Portland cement emits 0.9 t of CO2.

6

Meanwhile, the use of sand from riverbeds and deltas as
aggregates in concrete also presents noteworthy environmental
issues. Sand mining erodes coastlines, destroys aquatic life, and
threatens local communities. Nearly 50 billion tons of sand are
extracted each year, making it the most mined material in the
world.7 The use of sand has tripled over the past two decades
as the demand for concrete rises from developing countries
building new infrastructure.8 Despite its widespread use, the
extraction impacts of sand are not well-understood, and
extraction rates exceed natural sand replenishment rates.9

Unless change is found, the world may very soon be facing a

shortage of its most mined material.10 Potential replacements
for fine aggregates have been examined, including waste
foundry sand,11,12 oyster shells,10 waste glass sand,13 coconut
shell,14 and rubber-like materials.15 However, replacement with
these materials generally has a negative impact on the
mechanical properties of the final concrete.
Recently, our research group demonstrated that flash Joule

heating (FJH) could be used to synthesize flash graphene
(FG) from a variety of different feedstocks, including waste
plastic,16−18 coffee grounds,19 asphaltenes,20 soybean oil,21 and
rubber tires.22 The resulting FG is turbostratic23 and more
easily dispersed in composites than graphene produced from
exfoliation of graphite.24 A variety of other applications have
been explored for FJH, including synthesis of hybrid carbon
nanomaterials,25,26 doped materials,27−29 anode recycling,30

and heavy metal removal from coal fly ash.31 Coal materials
have been demonstrated to be excellent feedstocks for FG due
to their high carbon content. As renewable energy sources
become more ubiquitous, the annual consumption of coal is
estimated to fall from 5.25 billion tons in 2020 to 600 million
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tons in 2050.32 Hence, coal producers are eager to find
alternative applications for coal materials. Metallurgical coke
(MC), a coal-based product, has been demonstrated by our
group to be one of the best feedstocks for conversion due to its
high carbon content, coupled with its high conductivity.33−35

In 2018, nearly 639.22 Mt of MC was produced, predom-

inantly for use in the steel industry.36 While these reserves are
currently smaller than that of concrete-suitable sand, this
market will likely continue to grow as demand for steel
increases.37,38 As demand for concrete increases and the rate of
sand extraction further outpaces the natural replenishment rate
of sand, reserves of concrete-suitable sand will continue to

Scheme 1. (a) Scheme Depicting the Preparation of FGA and Subsequent Replacement of NA for Casting of Concrete and (b)
Composition of Size Proportions in NA and FGAa

aAll scale bars are 2 cm. The tan rectangular probe with two wires attached to the FGA concrete sample is a strain gauge. *The grain size is larger
than mesh size 12, indicating a smaller grain number.

Figure 1. (a) Average Raman spectra with standard deviation shown as the shaded regions and (b) XRD characterization of FGA. (c) Yield data
and (002) peak analysis of different particle sizes in FGA.
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dwindle. As such, finding aggregate alternatives to sand has
become increasingly important.
Here, we demonstrate the use of MC-derived FG (MCFG)

as both a reinforcing additive in cement and a potential
replacement for fine aggregates in concrete. MC is also
favorable for this application due to its large particle size
relative to FG formed from other feedstocks,33 which leads to a
similar grain size profile found in concrete made with
traditional natural aggregates (NA). A blend of MCFG is
prepared with size proportions similar to NA, resulting in flash
graphene aggregate (FGA). This FGA is used here as a total
replacement for NA, resulting in lighter concrete with
increased toughness, peak strain, and specific compressive
strength, along with only a small reduction in specific Young’s
modulus. FGA can potentially be used to lighten and
strengthen concrete while also replacing, in part, our dwindling
reserves of concrete-suitable sand with carbon-based materials
from coal.

2. RESULTS AND DISCUSSION
To mimic the size and composition of NA with FGA, raw MC
was ground using a grinder (Goldbelt Global, model
OS0411CSVS, serial no. oSEL04110091, 110 V) to achieve
the same size proportions as NA (Scheme 1a) as per ASTM
C33 (American Society for Testing and Materials) specifica-
tions. NA was separated into different sizes with sieves of
varying meshes ranging from #12 to #100. Each size
proportion was weighed to determine the percent of the
aggregate that each size comprised (Scheme 1b). After
grinding, the MC was separated into the same size proportions
and FJH into MCFG. Peak currents during this process range
from ∼1592 to ∼890 A, generally decreasing as the particle
size decreases (Figure S1). In 2021, the average cost of 1 t of
MC was $234.39 The industrial rate for electricity in Texas is
∼$0.04 kW h−1, so the cost of converting MC into MCFG
ranges between ∼$71 and $84 per ton (Figure S2). Energy
density was reduced for the two smallest size portions since
higher voltages produce lower-quality FG with smaller

Figure 2. Comparison of compressive stress−strain curves of FGA, MCA, and NA concrete at (a) 1, (b) 3, (c) 7, and (d) 28 days of curing. The
cement:aggregate volume ratio is 1.0, and the water:cement mass ratio is 0.6. (e,f) Comparison of mechanical properties of concrete samples made
with FGA, MCA, and NA. The units of specific compressive strength are kPa m3 kg −1, and the units of specific Young’s modulus are MPa m3 kg−1.
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particles. These varying sizes were recombined into FGA using
the measured proportions of NA. FGA was then used as a total
replacement for NA in concrete, reducing the average sample
weight by 25%, due to the lower density of FGA (Figure S3).
Raman spectroscopy and XRD are powerful tools for

assessing the quality and turbostraticity of graphene as seen
in Figure 1.19 Raman spectroscopy can be used to determine
quality through analysis of the D, G, and 2D peaks that appear
at ∼1350, ∼1580, and ∼2700 cm−1, respectively. In Figure 1a,
the average of 100 different Raman spectra is presented for
each size of particle present in the FGA blend. Graphene yield
is defined as the percentage of spectra that can be classified as
graphene based on meeting the following criteria: (1) an I2D/
IG ratio of ≥0.3, (2) a signal-to-noise ratio of >5 in the 2D
band region, and finally, (3) a 2D band fwhm of <100 cm−1.
The graphene yield for each size proportion of FGA was found
to be >90% with an average I2D/IG ratio greater than 0.5,
indicating that the MCFG used as FGA is of good quality.
Generally, a high I2D/IG ratio is desirable since it is indicative
of extended 2D material properties. A lower ID/IG ratio
indicates that fewer defects and graphene edges are present.

XRD also provides insight into the turbostraticity of the FG,
as seen in Figure 1b. FG has been shown to be turbostratic,
meaning that the sheets of graphene are rotated about the axis
normal to the sheet below, resulting in an increased interlayer
spacing and decreased interlayer electron transport, enabling
retention of 2D material properties even with an increased
number of layers.19 This rotation contrasts with AB stacking
that appears in conventionally produced graphene from
graphite exfoliation, where electron-deficient areas are stacked
on top of electron-rich areas. The AB stacking leads to
increased interlayer electron transport and a shift to 3D
material properties as the number of layers increases. Further,
AB-structured graphene is harder to exfoliate in composites
due to the strong interlayer interactions. The decrease in the
diffraction angle and the increase in fwhm of the (002) peak
are some of the best indicators of turbostraticity found in FG.
Here, we see that the smallest sizes of MCFG (#70−100) have
a (002) peak position of 26.44°. This value is close to that of
AB-stacked graphene, which is 26.4°, indicating increasing AB
stacking of this size proportion of MCFG. Increasing sizes of
MCFG show a downward shift in the (002) peak position,

Figure 3. Comparison of compressive stress−strain curves of FGA, MCA, and NA concrete at (a) 1, (b) 3, (c) 7, and (d) 28 days of curing. The
cement:aggregate volume ratio is 1.0, and the water:cement mass ratio is 0.5. (e,f) Comparison of mechanical properties of concrete samples made
with NA and FGA. The units of specific compressive strength are kPa m3 kg −1, and the units of specific Young’s modulus are MPa m3 kg−1.
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with the lowest value being 26.08°, indicating that the larger
sizes of MCFG are more turbostratic.
Initial testing of NA concrete and FGA concrete was

conducted at a cement:aggregate volume ratio of 1.0 and a
water:cement mass ratio of 0.6, as seen in Figure 2. After 1 day
of curing, concrete made with NA, FGA, and metallurgical
coke aggregate (MCA) was compared through compressive
testing (Figure 2a). MCA is made up of MC in the same size
proportions as NA, prior to FJH conversion into FGA. Given
that FGA concrete is 25% lighter than NA concrete, rather
than reporting compressive strength and Young’s modulus, the
specified versions of each are reported. These consider the
density of the material, thereby providing a stiffness to mass
ratio.40,41 Here, toughness is measured by calculating the area
under each stress−strain curve by using the Integrate function
of Origin software. All values for toughness, peak strain,
compressive strength, Young’s modulus, specific compressive
strength, and specific Young’s modulus can be found in Table
S1.
After 1 day, FGA concrete has 32, 54, and 29% increases in

toughness, peak strain, and specific compressive strength,
respectively, compared to NA concrete (Figure 2e,f). However,
it has a 31% lower specific Young’s modulus. This decrease in
Young’s modulus is likely due to the decreased hardness of the
FGA compared to NA. MCA concrete has 38, 68, and 6%
increases in toughness, peak strain, and specific compressive
strength, respectively, compared to NA concrete. However, it
also shows a 32% decrease in specific Young’s modulus. Given
the importance of compressive strength and Young’s modulus,
FGA is preferable for use over MCA. This could potentially be
due to the enhanced dispersibility of FG compared to the
amorphous carbon feedstocks used in its production.19 Here,
raw compressive strength and Young’s modulus of NA
concrete are higher than those of FGA and MCA concrete.
Again, as NA concrete is significantly heavier than FGA and
MCA concrete, the specific compressive strength and specific
Young’s modulus are used to compare the strength-to-weight
ratios, rather than the simple compressive strength and
Young’s modulus.
Extending the curing time from 1 day to 3, 7, and 28 days

shows similar trends in the comparison between NA concrete
and FGA concrete, where toughness, peak strain, and specific
compressive strength of FGA concrete are comparable or
higher than in NA concrete (Figure 2b−d). As the curing time
increases, the properties of MCA concrete fall further behind
those of FGA concrete and NA concrete. MCA without FJH
results in a poorer performing aggregate replacement than
FGA. Hence, MCA is not used in further testing for
water:cement ratio optimization.
The increase in mechanical properties when comparing FGA

concrete to MCA concrete can potentially be attributed to the
formation of powerful interfacial forces between carboxylic
groups and hydration products, enhanced mechanical inter-
locking, or promotion of hydration processes.42,43 These
microscale processes appear when graphene is used as a
reinforcing additive and are likely also present when FGA is
used as an aggregate. These processes would not be present in
MCA concrete where MCA is mixed prior to FJH as MCA is
amorphous. Sheets of FG are likely dispersed in the cement
during the curing stages of FGA concrete, leading to these
effects, as well as the filler effect for acceleration of hydration
reactions for cementitious materials and the bridging effect of

graphene nanoplatelets for microcracks.44,45 However, further
study is necessary to fully elucidate the mechanisms at work.
Since concrete strength is tied to the ratio of water and

cement, we studied this relationship in concrete made with
FGA. Testing of NA concrete and FGA concrete was
conducted at a cement:aggregate volume ratio of 1.0 and a
water:cement mass ratio of 0.5, as seen in Figure 3. All values
for toughness, peak strain, compressive strength, Young’s
modulus, specific compressive strength, and specific Young’s
modulus can be found in Table S2. The compressive strength
values observed mean that these materials could be suitable for
most types of concrete construction, aside from high-rise
buildings and columns.46 Similar trends are observed in FGA
concrete, where toughness, peak strain, and specific compres-
sive strength are comparable to or higher than NA concrete, at
the cost of specific Young’s modulus (Figure 3). At 28 days,
toughness, peak strain, and specific compressive strength of
FGA concrete are 32, 33, and 21% higher than those of NA
concrete, respectively (Figure 3e,f). However, at this water:-
cement mass ratio, the specific Young’s modulus of FGA
concrete is much closer to that of NA concrete, with 11, 0.4,
8.7, and 11% reductions at 1, 3, 7, and 28 days, respectively, as
each sample achieves its maximum strength after 28 days.
Moving forward, a variety of experiments studying the effects

of graphene aggregates on cement hydration and densification
could be carried out to better understand the mechanisms
behind the use of FGA. Experiments such as hydration heat,
pore structure analysis, and the measurement of water
absorption might elucidate these mechanisms. Additionally,
the unique properties of FGA might lead to an additional
functionality such as self-sensing.

3. CONCLUSIONS
Here, FGA is prepared through FJH of MC into high-quality
turbostratic FG with varying sizes, according to the makeup of
NA. This FGA is demonstrated for use as a replacement for
fine NA, such as sand, reducing the deleterious effects of sand
removal from its natural environment. FGA in concrete enables
a 25% reduction in weight, along with increases in toughness,
peak strain, and specific compressive strength of 32, 33, and
21%, respectively, with slight reductions in specific Young’s
modulus. As demand for sand worldwide continues to outpace
its natural replenishment rates, the use of FJH to prepare FGA
from coal-derived materials can enable replacement of fine
sand aggregates. Finally, since the weight of the FGA-based
concrete is 25% less than that of the NA-based concrete,
significant savings on transportation to the construction site
will be realized.

4. EXPERIMENTAL SECTION/METHODS
4.1. Materials. MCFG was prepared by sieving ground MC and

FJH of the varying portions of MC size. NA was found to be
composed of particles with sizes ranging from larger than mesh size
#12 to #100. Of the NA particles measured, 17.6% were > #12 (>1.68
mm), 23.0% were #12−20 (1.68−0.841 mm), 37.3% were #20−50
(0.841−0.297 mm), 16.8% were #50−70 (0.297−0.210 mm), and
3.6% were #70−100 (0.210−0.149 mm) (Scheme 1). Particles of MC
were separated using the sieves, and each individual size of MC was
subjected to a variable FJH pulse with duty cycles of 10, 20, and 50%,
for 1, 0.5, and 5 s, respectively. Depending on the size of the MC
feedstock, pulses of 350, 370, or 380 V and a 1,000 Hz frequency were
used to produce MCFG (Figures S1 and S2). Using the measured
proportions for NA, different size proportions of MCFG were
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combined into a blend of FGA that mimics the size distributions of
NA. Quikrete all-purpose sand was used as NA.

4.2. Raman Spectroscopy. Raman spectra were collected with a
Renishaw inVia confocal Raman microscope and a 532 nm laser. A
50× objective lens was used with a laser power of 5 mW to scan the
samples from 1300 to 2800 cm−1. Large-area Raman mapping was
used to determine the crystallinity and morphology of the FG with
analysis of the spectra using a custom-written Python script from the
RamPy package. Collected spectra were background-corrected, and a
Savitsky−Golay filter was used to smooth the spectra before
quantification of graphene yield and peak ratios. To qualify as
graphene, three criteria were used to assess individual spectra: (1) a
minimum I2D/IG ratio of 0.3, (2) a signal-to-noise ratio of >5 in the
2D band region, and (3) a 2D band with an fwhm of <100 cm−1. To
minimize variation in the z-height during collection of large-area
Raman maps, each sample of MCFG was ball-milled at 400 rpm for 2
h into a fine powder.

4.3. X-ray Diffraction (XRD). XRD data of ball-milled MCFG
were collected and analyzed on a Rigaku SmartLab II instrument with
zero-background sample holders. Collection was carried out with a
scan width of 0.02° step−1 and a scan rate of 2° min−1.

4.4. Concrete Mix Design. The cement used in this project was
Portland cement type I/II manufactured with ASTM C150
specifications. The sizes of NA used in concrete mixing followed
ASTM C33 specifications. For NA concrete specimens, the cement/
aggregate weight ratio was 0.5, which was used for common purpose
concrete mixing. Because the density of FGA was ∼0.7 g cm−3, which
is approximately half of the density of the NA, the FGA concrete can
be filled by FGA with half the weight of NA that would be required to
occupy the same volume. We started with a 0.4 water/cement ratio
and observed reduced workability in concrete with FGA or MCA.
Compared to NA concrete, the FGA and MCA concrete samples have
a higher segregation of aggregates and lower flowability. It was
difficult to maintain the homogeneity of the concrete mix. For this
reason, we increased the water/cement ratio to 0.5 and then to 0.6 to
increase the workability. At this stage of study, no superplasticizer was
added in the concrete mix, though this could be attempted in future
work. Additionally, FGA and NA were not used in combination;
instead, the effect of total replacement of NA with FGA is shown here.

4.5. Compressive Testing. All concrete specimens were removed
from the molds after 24 h and then cured in water for 1, 3, 7, and 28
days. Because of the limitation of the FGA production, the size of the
concrete specimen was proportionally scaled down based on the
ASTM C39 specifications. The ASTM standard specimen was a 101.6
× 203.2 mm2 cylinder. The dimensions of the concrete specimen used
in this study were 25.4 × 25.4 × 50.8 mm3. To perform an ASTM
standard test, 200 times as much volume would need to be filled with
FGA, which was not feasible with laboratory-scale production of FGA.
Moving forward, larger production facilities will likely enable us to test
larger specimen sizes. The specimens were tested on a uniaxial
compression machine with a 0.002 in min−1 loading rate. The load
and strain were recorded by a loading cell and an attached strain
gauge, respectively.
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