
2106506 (1 of 11) © 2022 Wiley-VCH GmbH

www.advmat.de

ReseaRch aRticle

Machine Learning Guided Synthesis of Flash Graphene

Jacob L. Beckham, Kevin M. Wyss, Yunchao Xie, Emily A. McHugh, John Tianci Li,  
Paul A. Advincula, Weiyin Chen, Jian Lin, and James M. Tour*

J. L. Beckham, K. M. Wyss, E. A. McHugh, J. T. Li, P. A. Advincula,  
W. Chen
Department of Chemistry
Rice University
6100 Main Street MS 222, Houston, TX 77005, USA
Y. Xie, J. Lin
Department of Mechanical and Aerospace Engineering
University of Missouri
Columbia, MO 65211, USA
J. M. Tour
Department of Chemistry
Smalley-Curl Institute
NanoCarbon Center
Welch Institute for Advanced Materials
Department of Materials Science and Nanoengineering
Department of Computer Science
Rice University
6100 Main Street MS 222, Houston, TX 77005, USA
E-mail: tour@rice.edu

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adma.202106506.

DOI: 10.1002/adma.202106506

nology, nanomaterials must be synthe-
sized by rapid and scalable processes that 
do not deleteriously affect their properties. 
To address this challenge, we and others 
recently reported the synthesis of gra-
phene,[1–3] as well as mixed-phase MoS2 
and WS2,[4] high-entropy alloy NPs,[5,6] 
nanodiamond,[7] and other nanomate-
rials using the electrothermal flash Joule 
heating effect. The graphene product was 
called “flash graphene” after the intense 
black body radiation produced during the 
electrical discharge. Flash Joule heating 
permits the conversion of amorphous 
carbon, including waste such as pyro-
lyzed rubber tires,[8] ash by-products from 
plastic recycling,[9] or landfill-grade mixed 
plastic waste,[10] into graphene crystals. 
Furthermore, flash graphene crystals are 
turbostratic and exhibit varying degrees 
of layer-to-layer misorientation along the 
c-axis.[1] Such turbostratic graphene pos-
sesses nanostructure-dependent prop-
erties, including enhanced solubility in 
surfactant solutions[1] and altered band 

structure.[11] The scalable and environmentally friendly nature 
of the Joule heating process, as well as the turbostratic nature of 
the synthesized product, make flash Joule heating an intriguing 
synthetic technique that warrants further study and analysis.

Although flash Joule heating has immense practical utility, 
it is intrinsically difficult to study. The flash graphene forma-
tion process occurs in just hundreds of milliseconds. Further-
more, present-day flash Joule heating reactors do not offer con-
trol over the current discharge profile, adding a stochastic ele-
ment to each reaction that depends on momentary fluctuations 
in circuit-to-sample contact. These fluctuations are difficult to 
control experimentally, making it challenging to map process–
structure–property relationships by a traditional grid-search. 
Due to these factors, the parameters that drive bulk nanocrystal 
formation during flash Joule heating remain ambiguous.

At the same time, an emerging body of literature indicates 
that machine learning (ML) is a powerful tool for fundamental 
studies in materials science.[12–18] While ML is classically con-
sidered an industrial tool for process failure prevention, the use 
of ML to interrogate large parameter spaces can yield insights 
on new technologies at a low time-cost. For example, Tang et 
al. used ML to explore the process–structure–property relation-
ships governing well-understood processes, such as chemical 
vapor deposition and quantum dot synthesis, and argued based 
on their results that ML would allow researchers to investigate 

Advances in nanoscience have enabled the synthesis of nanomaterials, such 
as graphene, from low-value or waste materials through flash Joule heating. 
Though this capability is promising, the complex and entangled variables 
that govern nanocrystal formation in the Joule heating process remain poorly 
understood. In this work, machine learning (ML) models are constructed 
to explore the factors that drive the transformation of amorphous carbon 
into graphene nanocrystals during flash Joule heating. An XGBoost regres-
sion model of crystallinity achieves an r2 score of 0.8051 ± 0.054. Feature 
importance assays and decision trees extracted from these models reveal key 
considerations in the selection of starting materials and the role of stochastic 
current fluctuations in flash Joule heating synthesis. Furthermore, partial 
dependence analyses demonstrate the importance of charge and current den-
sity as predictors of crystallinity, implying a progression from reaction-limited 
to diffusion-limited kinetics as flash Joule heating parameters change. Finally, 
a practical application of the ML models is shown by using Bayesian meta-
learning algorithms to automatically improve bulk crystallinity over many 
Joule heating reactions. These results illustrate the power of ML as a tool to 
analyze complex nanomanufacturing processes and enable the synthesis of 
2D crystals with desirable properties by flash Joule heating.

1. Introduction

The scalable synthesis of nanomaterials is a crucial goal in 
materials science. To achieve the widespread use of nanotech-
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them more efficiently than was previously possible.[16] This 
work is emblematic of a growing acknowledgement that ML 
possesses tremendous potential even in exploratory research.

Immense progress has been made by utilizing ML in mate-
rials engineering,[19] especially in theoretical studies,[20,21] where 
ML is commonly used to approximate solutions to partial dif-
ferential equations and enhance predictions of materials prop-
erties. These ML-enhanced property predictions can then serve 
to identify promising candidate materials.[22] Furthermore, 
Bayesian model-based optimization techniques offer new ave-
nues for materials discovery and property improvement.[23,24] 
Such optimization techniques leverage ML’s propensity for 
function approximation to minimize or maximize a given objec-
tive function, in many cases opening new opportunities for 
automated materials processing. In previous studies, Bayesian 
optimization algorithms were used to design shape-tailored 
gold nanocrystals,[25] optimize composite designs for various 
force-loading conditions,[26] and uncover novel syntheses for 
organic compounds.[27] Some Bayesian learning algorithms have 
even been designed specifically for scientific exploration, using 
boundary-free methods to facilitate identification of out-of-trend 
observations in high-throughput computational studies.[28]

Here, we construct ML models to predict the effects of flash 
Joule heating process parameters on the crystallization of flash 
graphene from low-value materials or waste. The unique capa-
bilities of ML enable a detailed study of direct-current flash 
Joule heating despite the large parameter space involved and 
the presence of uncontrollable stochastic elements. Further-
more, we demonstrate the use of a Bayesian optimization algo-
rithm to iteratively improve graphene crystallization over many 
trials. These results offer useful insights regarding the flash 
Joule heating technique and provide a potent demonstration 
showing how ML can enhance the study of new materials syn-
thesis technologies.

2. Results and Discussion

As shown in Figure  1a, we first synthesized flash graphene 
from four low-to-negative value amorphous carbon starting 
materials in N  = 173 separate Joule heating reactions. Flash 
Joule heating was performed on a custom-built direct-current 
Joule heating station (Figure S1, Supporting Information). The 
starting materials employed in these reactions were: carbon 
black,[1] plastic waste-derived pyrolysis ash,[9] pyrolyzed rubber 
tires,[8] and metallurgical coke. Then, we assessed the structural 
character of each sample by wide-area Raman mapping. Each 
of the >20 000 spectra collected in this study was preprocessed 
(Figure S2, Supporting Information) and analyzed by custom-
written scripts, which compiled a metric to estimate the pro-
portion of the amorphous starting material in each sample that 
had crystallized into graphene. This metric was termed the 
“graphene yield.” Finally, we constructed a suite of ML models 
to predict the graphene yield of each reaction.

Sample Raman spectra of amorphous carbon, graphene, and 
highly turbostratic graphene are shown in Figure  1b. Raman 
spectroscopy is a powerful technique for the structural charac-
terization of carbon, especially graphitic materials.[29–31] Spectra 
of amorphous carbon contain two bands: the G and D bands. 

The D band is forbidden by selection rules, but it commonly 
appears due to symmetry disruptions, such as armchair edges 
or point defects. Raman spectra of graphene and graphite con-
tain the second-order overtone of the D band, referred to as 
the 2D band. The appearance of this band is a positive indi-
cator for the formation of a graphitic lattice, and its shape and 
intensity offer important nanostructural information. Spectra 
of high-quality turbostratic flash graphene contain a resonance-
enhanced single-Lorentzian 2D band with a narrow full-width 
at half-maximum (FWHM; ≈16 cm−1) and a magnified I2D/IG 
peak intensity ratio (up to a maximum of 17) as compared to 
pristine single-layer graphene (which possesses I2D/IG of ≈3).[32]

Histograms in Figure 1c–f show sample-level statistics com-
piled from Raman mapping, including the graphene yield, 
the average I2D/IG, the average ID/IG, and the average FWHM 
of the 2D band. Statistics on individual spectra (shown in 
Figure  1g–i) illustrate relationships between the I2D/IG ratio, 
the FWHM of the 2D band, and the position of the 2D band, 
showing a blue-shifted and narrowed 2D band at high I2D/IG 
which is indicative of resonance-enhanced turbostratic gra-
phene.[2,10,32] Wide-area mapping is used to assess crystallinity 
because the Raman spectra of flash graphene samples can vary 
quite widely throughout individual samples (Figure S3, Sup-
porting Information). The high-throughput nature of the map-
ping assay ensures that the compiled metric accurately captures 
the bulk character of each sample. From these mapping assays, 
the “graphene yield” can then be calculated as the percentage 
of Raman spectra from each sample that can be classified as 
graphene rather than amorphous carbon (a detailed discussion 
of selection criteria can be found in the Experimental Section). 
This graphene yield metric was then validated quantitatively by 
thermogravimetric analysis and qualitatively by scanning elec-
tron microscopy. Thermograms show that higher-yield flash 
graphene samples were typically more thermally stable than 
their lower-yield counterparts (Figure S4, Supporting Infor-
mation), while scanning electron micrographs reveal a visible 
microstructural evolution from low-to-high crystallinity (Figure 
S5, Supporting Information). Flashed materials were addition-
ally characterized by X-ray diffraction (XRD; Figure S6, Sup-
porting Information) and X-ray photoelectron spectroscopy 
(Figures S7–S10 and Table S1, Supporting Information).

2.1. Model Construction and Performance

ML regression models were constructed to predict the graphene 
yield metric derived from Raman spectral mapping. First, a 
total of five features were empirically selected from the avail-
able parameters tested for the prediction of graphene yield (see 
Table S2 and Figures S11–S14 in the Supporting Information 
for a summary of the features attempted and dataset character-
istics). Then, the five selected features were then used to train 
six ML regression models for the prediction of graphene yield. 
Linear regression (LR-R),[33] Bayesian regression (BR-R),[34]  
multilayer perceptron (MLP-R),[35] decision tree (DT-R),[36] random 
forest (RF-R),[37] and eXtreme Gradient Boosting (XGB-R)[38]  
regression models were trained using fivefold cross-validation. 
Hyperparameters were tabulated in Table S3 in the Supporting 
Information.

Adv. Mater. 2022, 34, 2106506
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Figure 2a,b shows the performance of regression models pre-
dicting graphene yield. For this task, decision tree-based models, 
including DT-R, RF-R, and XGB-R, achieved the best performance. 
RF-R models achieved root mean squared error (RMSE) of 12.7% ±  
1.3% and an r2 score of 0.7808 ± 0.064. XGB-R models, such as 
the example shown in Figure  2c, achieved even better perfor-
mance, with an RMSE of 11.3% ± 2.2% and an r2 score of 0.8051 ± 
0.054. The error distribution was skewed, as ≈40% of the samples 
tested showed predictions that were <5% off from the true value 
(Figure 2d). Sample performances of other ML regression models 
are shown in Figure S15 in the Supporting Information.

ML models arrive at their predictions based on the algorithms 
upon which they are constructed. Decision tree-based models, 
i.e., DT-R, RF-R, and XGB-R, make predictions based on a series 

of if/then statements derived from the input features, which 
together form a “tree” of many branches that yield different pre-
dictions of the output metric. The DT-R model uses a single deci-
sion tree, while the RF-R model uses an ensemble of trees to pro-
duce a weighted average prediction. The XGB-R model also uses 
an ensemble of trees, but it constructs trees and sequentially 
weights their prediction. This sequential weighting, called “gra-
dient boosting,” enhances model accuracy and has led XGB-R to 
be one of the most widely used ML models since its introduction 
in 2016.[17,38,39] In contrast to decision tree-based models, linear 
regression models, such as LR-R and BR-R, make predictions 
based on linear combinations of the input features. Decision 
trees systematically outperform linear models in this study, sug-
gesting that the relationships between crystallinity and the input 

Adv. Mater. 2022, 34, 2106506

Figure 1. Scheme and analysis of dataset. a) Schematic depiction of study. b) Sample Raman spectra of amorphous carbon, graphene, and turbostratic 
flash graphene, exemplifying the distinction between typical flash graphene spectra (red) and spectra from highly turbostratic graphene crystals (blue). 
These Raman spectra were collected from flashed samples of carbon black. c–f) Bulk average statistics of the graphene yield, I2D/IG, ID/IG, and FWHM 
of the 2D band of each sample analyzed in this study. g–i) 2D histograms showing statistics from ≈16 000 Raman spectra obtained from spots of flash 
Joule heated material, showing relationships between g) the 2D band position and I2D/IG, h) I2D/IG and ID/IG, and i) I2D/IG and the FWHM of the 2D 
band. These plots show the blue shift, narrowing, and resonance enhancement of the 2D band in spectra from highly turbostratic graphene crystals.
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parameters used to train the model are nonlinear (Figure S16, 
Supporting Information).[40] An artificial neural network (MLP-R) 
also achieves satisfactory predictions of crystallinity, but is out-
performed by the decision tree-based models in this study.

2.2. Model Interpretation and Analysis

2.2.1. Feature Importance Analysis

Feature importance analysis provides an estimate of the pre-
dictive power of all the features used to train an ML model. 
Figure 3 introduces the features used to train ML models pre-
dicting crystallization. The selected features were the charge 
density (CD), the material type (M), the area under the time–
current curve divided by the sample mass (AIT), the maximum 
current divided by the sample mass (IMax), and the final current 
divided by the maximum current (IF/IMax). Two of the features, 
CD and M, were derived from controllable flash Joule heating 
experimental variables. The other three features, AIT, IMax, and 
IF/IMax, were derived from time–current curves recorded during 
the reaction by a Hall effect sensor (Figure  3a) and extracted 
using custom-written scripts. While predictions of crystal-
linity could be made with the experimental parameters alone, 
the time–current curves offered complementary information 
regarding changes in the sample resistance over time, as well 
as fluctuations in contact between the sample and the circuit  
due to outgassing. These changes are difficult to control 
experimentally. Consequently, the inclusion of current-derived  

statistics in the feature set boosted model performance (Table S2,  
Supporting Information). Figure  3b shows the correlation 
matrix between the five empirically selected features.

Figure 3c shows a feature importance analysis for the features 
used to train the XGB-R model, which indicates that CD was the 
most crucial feature for predictions of bulk crystallinity. CD rep-
resents the amount of charge inside the flash Joule heating sta-
tion’s capacitor bank at t = 0 per g of carbon. It is calculated by 
multiplying the initial voltage (V0) by the capacitance of the system 
(C) and dividing by the sample mass (m). Since Joule heating 
produces thermal energy from collisions between electrons and 
atomic nuclei,[41] CD is likely related to heat or energy density. 
Previously, charge and current density were found to control the 
rate of transformations of carbon materials on smaller scales.[42,43] 
Moreover, prior experiments in other nonequilibrium graphene 
synthesis techniques showed that laser-induced graphene syn-
thesis depended on the reaction reaching a critical irradiation 
fluence to achieve sufficient energy density.[44] Figure  3d shows 
that, generally, flash Joule heating reactions with low CD produce 
fewer graphene crystals, while most flash Joule heating reactions 
with high yield employ high CD. Decision trees extracted from the 
XGB-R model further support the hypothesis that high CD leads 
to high yield predictions (Figure 3e). Figure S17 in the Supporting 
Information explores the relationship between CD and graphene 
yield, showing that the specific combination of C, V0, and m into 
CD produces a metric that is more correlated with crystallinity.

The chosen starting material, denoted “M,” also plays a crit-
ical role in predicting flash Joule heating efficacy as shown in 
Figure 3c. This is also apparent from Figure 2c, which shows 

Adv. Mater. 2022, 34, 2106506

Figure 2. Performance of regression models predicting graphene yield. a) Typical r2 scores of six types of regression models for the prediction of 
graphene yield from flash parameters. Error bars represent the standard deviation of the r2 scores across five train/test split iterations. b) RMSE of the 
six models presented in (a). c) Performance of an XGB-R for the prediction of graphene yield. CB: carbon black; PA: pyrolysis ash; MC: metallurgical 
coke; TCB: tire-derived carbon black. d) A typical error distribution for an XGB-R model of graphene yield.
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that, generally, carbon black-derived flash graphene possessed 
high crystallinity, while metallurgical coke-derived flash gra-
phene possessed low crystallinity even in conditions of high 
CD. This precursor-dependent crystallization likely cannot be 
attributed to differential heating abilities, as the low resistance 
of metallurgical coke allows the generation of higher current 
compared to the other three feedstocks (Figure S18, Supporting 
Information). Therefore, the lower crystallinity of coke-derived 
flash graphene likely arises from the large size of the metallur-
gical coke particles (150–210 µm).

The other three features, i.e., AIT, IMax, and IF/IMax, make 
smaller but still significant contributions to model predictions  

of graphene yield. AIT is the area under the time–current curve 
divided by the mass, while IMax is the peak current divided 
by the mass. Ergo, three of the five features used to train the 
model, CD, AIT, and IMax, represent metrics of charge or cur-
rent density. CD and AIT are conceptually similar, both rep-
resenting measurements of charge per unit mass, but they 
convey different information and are not correlated (r = 0.36). 
CD, which is calculated using the initial voltage V0, represents 
the charge present in the capacitors at t  =  0. Conversely, AIT 
represents the charge that passes through the sample during 
the reaction, which relates to the voltage drop ΔV rather than 
V0. As a result, CD offers information about the initial state 

Adv. Mater. 2022, 34, 2106506

Figure 3. Feature analysis of XGB-R model for prediction of graphene yield. a) A sample time–current curve showing features extracted from the 
discharge profile of each flash. b) A correlation map of the five features used to train ML models. c) Relative feature importance of the five empirically 
chosen features included in this model. d) Color map of the graphene yield prediction of the test data set after train/test splitting and training of the 
model on the training data. The color map illustrates the effect of charge density on the predicted and actual yields. e) Map of a typical decision tree 
derived from XGB-R showing the effects of various process parameters on the final predicted value. Individual decision trees are weighted according 
to their accuracy to assemble a final prediction value. CD: charge density; M: material type; AIT: area under the time–current curve normalized to the 
sample mass; IMax: maximum current normalized to the sample mass; IF/IMax: final current divided by maximum current.
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of the system, while AIT offers information about the system 
while the reaction is taking place. The large dependence of 
graphene yield on CD might indicate that most of the crystal-
lization reaction occurs near the beginning of the flash Joule 
heating reaction, which has previously been predicted theo-
retically.[1] Alternatively, the lack of a neat dependence on the 
Joule-Lenz power, which scales with V0

2 rather than V0 (Table 
S2, Supporting Information), could offer evidence that electro-
static effects[41] contribute in tandem with Joule heating to the 
formation of large flash graphene crystals.[45] Nevertheless, the 
predictive power of CD, AIT, and IMax suggests that charge and 
current density are the key considerations in the prediction of 
flash Joule heating reaction efficacy. Finally, IF/IMax likely con-
veys whether the reaction was forced to stop prematurely due to 
stochastic contact disruptions or outgassing.

2.2.2. Partial Dependence Analysis

Partial dependence (PD) analysis is a powerful analytical tool 
accessible through ML. PD represents the average model pre-
diction for given values of each feature. Partial dependence 
plots (PDPs) map relationships between features and the target 
output, giving additional insight as to how ML models arrive at 
their conclusion. For example, PDPs from decision tree models 
show sharp dips and wrinkles at the nodes of prominent trees, 
whereas PDPs from other models show a smoother PD surface 

(Figures S19 and S20, Supporting Information). Multivariable 
PDPs of the quantitative features included in the XGB-R model 
are shown in Figure 4. They reveal that the three metrics related 
to charge or current density (CD, AIT, and IMax) have similar 
relationships with crystallinity. At low values of “x,” graphene 
yield systematically increases with the values of these features. 
Then, at higher values, this relationship plateaus.

Justification for the behavior observed in PD functions of 
CD, AIT, and IMax can be found by taking inspiration from wet 
nanocrystal synthesis. Since charge or current in flash Joule 
heating is related to energy density, increasing the values of 
these metrics is analogous to increasing the temperature in 
a classical synthesis reaction. Following this analogy, such a 
dynamic relationship between energy density and crystallinity 
could suggest a shift in reaction kinetics from surface reaction-
controlled nucleation to a diffusion-controlled regime.[46] At low 
reaction energies, nucleation occurs selectively at hotspots, and 
increasing the energy density can dramatically affect the bulk 
crystallinity of the product. However, at higher reaction ener-
gies, the entire sample volume receives sufficient energy for 
nucleation. In this regime, increasing the reaction energy no 
longer affects the crystallinity of the end-product (Figure S21, 
Supporting Information). The PDPs shown in Figure 4 suggest 
that such a transition may occur at CD values between 100 and 
120 C g−1 where PD ceases to increase with CD. Consequently, 
this range might serve as useful benchmarks for new flash 
Joule heating syntheses or systems. Additionally, it is possible 

Adv. Mater. 2022, 34, 2106506

Figure 4. Multivariable partial dependence plots (PDPs) of a) charge density and normalized maximum current, b) charge density and normalized 
area under the current/time curve, c) normalized maximum current and area under the current/time curve, and d) charge density and the final current 
divided by the maximum current. PDPs were constructed based on the predictions of models for samples in the test data set. Each plot maps PD (on 
the z-axis) for given values of two features (on the x- and y-axis). The color map overlaid on the xy-grid reflects the value of PD as a function of the two 
chosen features and serves as a visual aid.
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that increasing the flash Joule heating reaction energy beyond 
this transition point would move the nucleation process further 
into the realm of diffusion control, causing disperse nucleation 
and allowing some degree of size control over flash graphene 
crystals.

2.3. Bayesian Optimization

The previous analyses show ML’s ability to derive process–
structure–property relationships in flash Joule heating syn-
thesis. However, from a practical point of view, it is vital that 
these relationships can guide new syntheses using the knowl-
edge they provide. Therefore, we sought to use ML predictions 
of flash graphene crystallinity to recommend synthesis reac-
tion conditions for new feedstocks using Bayesian model-based 
optimization (Scheme  1). First, a “starter” data set compiled 
using randomly generated parameters was fed to the algorithm. 
Then, the algorithm generated predictions based on an RF-R 
surrogate model and suggested a new set of parameters. The 
algorithm leverages experience from past trials to explore the 
parameter space, trading off expected performance and explo-
ration of uncertainty according to an assigned acquisition 
function.[24,47] Eventually, this exploration yielded an enhanced 
graphene yield. Altogether, this automation process results in a 
system that can robustly synthesize flash graphene from waste 
with no prior knowledge about the starting material.

Toward this end, we implemented the process in Scheme 1 
using pyrolyzed rubber tires as a model waste material. 
Figure 5a,b shows that, after just 30 iterations, the mean gra-
phene yield of tire carbon black-derived flash graphene synthe-
sized using parameters suggested by the Bayesian optimization 
algorithm is 79%. This is significantly (p < 0.0001) higher than 
that achieved by random parameter values (36%). The improve-
ment of crystallization efficacy throughout the optimization 
process is additionally verified by XRD analysis (Figure S22, 
Supporting Information) and scanning electron microscopy 
(Figure S23, Supporting Information). Figure 5c shows that the 
improvements in flash graphene crystallinity depend on the 

identification of a favorable region in the flash Joule heating 
parameter space, with an optimal pretreatment, mass, pulse 
width, and charge density. Figure 5d–i shows PD relationships 
derived from the RF-R model used to suggest new parameters. 
The relationships derived from the learner model are con-
sistent with findings from the full dataset, as prediction values 
show direct correlations to voltage and capacitance but inverse 
correlations to sample mass.

The efficacy of the Bayesian optimization algorithm offers 
a promising outlook for automated flash graphene synthesis. 
Since flash graphene is commonly synthesized from waste 
materials,[1,8–10] advantageous precursors for flash Joule heating 
are diverse and likely to continually evolve as new exploit-
able wastes are identified for upcycling. Furthermore, many 
waste streams, such as those derived from household waste, 
will likely possess a high degree of heterogeneity. There-
fore, it is vital to be able to readily synthesize flash graphene 
from scratch with new starting materials and processes. The 
Bayesian optimization algorithm demonstrated here shows the 
ability to take waste materials with no prior identification or 
characterization and produce high-quality flash graphene in a 
low number of trials. Further development of this technique, 
potentially including the use of principal component analysis 
to process the Raman spectral profile of the produced graphene 
more directly,[48] may streamline the flash Joule heating process 
even further and lead to higher accuracy in optimization. These 
results show the capability of ML to accelerate the synthesis of 
nanomaterials by flash Joule heating.

3. Conclusion

This study provides a framework for the use of ML to pre-
dict the efficacy of flash Joule heating reactions in nanoma-
terial synthesis. ML models have been used to predict the 
extent of crystal formation, extract fundamental information, 
and drive process optimization. Feature analyses from these 
models showed that metrics of charge and current density pri-
marily dictated the extent of crystallization. Furthermore, the 

Adv. Mater. 2022, 34, 2106506

Scheme 1. Scheme showing the feedstock-blind automatic optimization of flash graphene synthesis using a Bayesian meta-learning algorithm.
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Figure 5. Model-based optimization according to graphene yield. a) Graphene yield of flash Joule heating reactions from tire-derived carbon black using 
randomized parameters and parameters suggested by a model-based optimization algorithm (MBO). Error bars represent the estimated uncertainty by 
the algorithm. b) Mean values of the yields given by the randomized parameters and the MBO-suggested parameters. The mean values are different 
with a significance level of p < 0.0001. c) Parameters suggested by the model-based optimization algorithm and random parameters. Mass, voltage, 
and capacitance are grouped into charge density (CD), calculated as C × V/m. The pretreatment (PT) total voltage, the PT peak voltage, and the pulse 
width (PW) are also presented. d–i) Partial dependencies of experimental parameters affecting the model-based optimization results, calculated by 
the RF-R learner algorithm implemented in R.
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contributions of starting material properties and the current 
delivery profile were analyzed. Model-based optimization has 
been demonstrated to autonomously improve the crystallinity 
of flash graphene over many trials. These results offer both 
fundamental insight and practical utility for advancing the use 
of flash Joule heating in nanomaterials synthesis. We antici-
pate that the framework laid out in this study can be expanded, 
potentially via the use of principal component analysis for 
dimensionality reduction of both the time–current curve and 
the output Raman spectra. This strategy would allow more 
advanced ML algorithms to deal directly with collected data, 
improving accuracy, offering more interpretable conclusions, 
and streamlining the interplay between ML and flash Joule 
heating. Overall, the use of ML demonstrates synergy with the 
flash Joule heating technique, and the continued use of ML 
models for its study and optimization may maximize its poten-
tial for graphene commercialization.

4. Experimental Section
Materials: Four low-or-negative-value feedstocks were employed 

for conversion to flash graphene: carbon black (Cabot BP2000), 
metallurgical coke (SunCoke Energy Inc., 70–100 mesh size, 150–210 µm 
grain size), pyrolysis ash (Shangqiu Zhongming EcoFriendly Equipment 
Co.), and pyrolyzed rubber tire-derived carbon black (Ergon Asphalt 
and Emulsion Co.). All materials were ground with a mortar and pestle 
before and after flash Joule heating but otherwise used as delivered. 
Commercial graphene nanoplatelets used for comparisons were 
obtained from XGSciences (xGnP-15, serial #5051209) and used without 
further modification.

Flash Joule Heating: A custom-built direct-current flash Joule heating 
station was employed for all experiments. Precursor powders (100 ≤ 
m  ≤ 400  mg) were sandwiched between two graphite electrodes and 
compressed inside an 8” diameter quartz tube. Then, the samples 
were placed in a series circuit with ten 6 mF capacitors (Mouser 
#80-PEH200YX460BQU2) and six 18 mF capacitors (Mouser # 
80-ALS70A183QS400). The ten 6 mF capacitors, typically employed 
for small-scale flash Joule heating reactions in lab, were used as the 
minimum-size capacitor bank in these experiments, while the six 18 mF 
capacitors were connected and disconnected from the circuit via circuit 
breakers to modulate the capacitance employed in each flash reaction. 
This resulted in C of 60 mF ≤ C ≤ 204 mF. Voltage to charge the capacitors 
was supplied by a DC source consisting of an AC wall outlet fed through 
an AC-DC converter. Samples were subjected to flash Joule heating 
treatments using a variety of pretreatments, voltages, pulse durations, 
and reaction atmospheres which are included in the full dataset. Flash 
Joule heating reactions were conducted inside a desiccator filled with the 
atmosphere chosen for each reaction. The atmosphere was modulated 
between argon, CO2, air, or light vacuum (10  mm Hg), which was not 
found to have a strong effect on the graphene yield (atmospheres for 
each individual reaction are tabulated in the full dataset, available on 
GitHub). The residual voltage after each flash was recorded, resulting in 
an initial voltage value (V0) and a voltage drop during flash Joule heating 
(ΔV) calculated by subtracting the final voltage from the initial voltage. 
Resistance of the sample was measured before and after each flash to 
monitor electrical contact between the electrodes and the sample, as 
well as to assess changes in the conductivity of the carbon products. 
Mass yields of >80% were typically observed, though this was dependent 
on the chosen feedstock. Pulse duration was modulated by insulated 
gate bipolar transistors (IGBTs) with programmable millisecond-level 
delay time that were connected to a Hall effect sensor through an 
inductor and controlled via custom LabView scripts. The Hall effect 
sensor was employed to collect information about current fluctuations 
over time (time–current curves). These time–current curves were then 

analyzed via custom-written Python scripts to provide features for the 
machine learning models.

NOTE: The flash Joule heating reaction employs high voltage with 
possibility of electric shock or electrocution. See the Supporting Information 
for a detailed discussion of safety protocols and component selection 
considerations.

Material Characterization and Analysis: Raman spectral mapping: Wide-
area Raman spectral mapping was chosen as the principal metric of 
characterization for this study. Spatial inhomogeneities could bias results 
obtained from low numbers of sample spectra taken from small areas. 
Hence, mapping was employed in an area of 1 mm2, with a minimum 
of N  = 64 spectra per map. Spectra were taken with a Renishaw inVia 
Raman microscope through a 50x lens and using a 5  mW 532  nm 
Nd:YAG laser for excitation. Renishaw Wire 5.5 LiveTrack software was 
used to maintain laser focus across large areas. Maps were analyzed 
via custom-written Python scripts employing the RamPy package.[49] 
Each of the spectra were baseline-corrected using a RamPy polynomial 
fit and smoothed using a Savitsky-Golay filter prior to analysis. Each 
Raman spectrum was classified as either “graphene” or “amorphous 
carbon” based on I2D/IG (I2D/IG > 0.3), the FWHM of the 2D band (15 < 
FWHM2D < 70 cm−1), and the signal-to-noise ratio (SNR2D > 8). Spectra 
without a sufficiently strong G band (SNRG > 8) were attributed to poor 
focusing of the laser beam and were not included in the analysis. The 
“graphene yield” (GY) metric for each sample was calculated as the total 
number of Raman spectra classified as graphene divided by the total 
number of Raman spectra taken of that sample, giving an approximate 
numerical indicator of the sample’s bulk crystallinity.

Additional characterization: Scanning electron micrographs were 
taken with an FEI Helios Nanolab 660 Dual-Beam Scanning Electron 
Microscope operating in immersion mode and using a through-the-lens 
detector optimized for high secondary electron yield. Thermogravimetric 
analysis was conducted using a Q-600 Simultaneous TGA/DSC from 
TA instruments. A temperature ramp of 10 °C min−1 was employed in 
air. XRD spectra were taken using a Rigaku SmartLab II using a zero-
background holder, a scan rate of 8° min−1, and step size of 0.005° per 
step. X-ray photoelectron spectroscopy was conducted using a PHI 
Quantera X-ray Scanning Microprobe. C 1s and Auger spectra were 
collected at a step size of 0.1 eV.

Machine Learning (ML): ML models: A total of six different types of 
ML models (BR, LR, MLP-R, DT-R, RF-R, and XGB-R) were trained to 
predict graphene yield. All models were constructed directly in Python 
using the package Scikit-Learn. Models were trained on 80% of the 
initial dataset and tested on the remaining 20%. Hyperparameter 
optimization was performed using fivefold cross-validation. Models with 
variable performance at different random seeds using the train/test split 
method were trained in five separate instances, and their performance 
was reported as mean ± standard deviation. Partial dependence was 
calculated using the Scikit-Learn extension for PD. All data were retained 
except for flash Joule heating reactions where quartz tubes shattered, 
resulting in loss of sample. This occurred ≈5% of the time. All data were 
made publicly available following suggested guidelines.[50]

Feature engineering: Features were empirically selected based on 
their predictive efficacy in regression models for graphene yield. Five 
selected features included the charge density (CD), materials type (M), 
the area under the time–current curve normalized to the mass (AIT), 
the maximum current value normalized to the mass (Imax), and the final 
current value divided by the maximum current value (IF/Imax).

CD is defined as Equation (1)

0CD
V C

m
= ×

 (1)

where V0 is the voltage, C is the capacitance of the system, and m is the 
mass of the precursors. M constituted the starting material employed in 
each flash and was separated using one-hot encoding. AIT was calculated 
by trapezoidal integration of the discharge curve collected by a Hall 
effect sensor. As mentioned in the discussion of Figure  3, AIT and CD 
are conceptually similar quantities with the same units, but they convey 
different information about the system. The calculation of CD used the 
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initial voltage V0. By contrast, measurement of AIT was depended on the 
voltage drop during the reaction ΔV. V0 and ΔV were different values 
because complete discharge was rare in the flash Joule heating reactions 
run in this study. They differed by the value of the residual voltage. An 
alternative version of CD was constructed using the voltage drop ΔV 
instead of the initial voltage V0, but this metric was less predictive of 
crystallinity (Table S2, Supporting Information) and correlated strongly 
with AIT (Pearson’s correlation coefficient of r = 0.85).

IMax was calculated as the maximum current recorded in the discharge 
divided by the mass. IF/IMax was calculated as the final recorded current in 
the flash divided by the maximum current. A visual depiction of how each 
of the time–current curve-derived features were calculated can be found 
in Figure 3a. The five selected features were empirically chosen based on 
their ability to improve model performance. Other features attempted 
are tabulated in Table S2 in the Supporting Information. These features 
were not included in the final model for one of two reasons: i) decreased 
model performance or ii) high correlation with existing features.

Evaluation metrics: All regression evaluation metrics were calculated 
using existing Scikit-Learn plugins. The r2 score was chosen as the 
principal metric due to its ability to compare model performance over a 
performance baseline (a model that predicted the mean output value for 
every sample). The r2 score was defined as Equation (2)

1
( )

2 1
2

1

2
r

y y

y y

i

n
i i

i

n
i i

∑
∑ ( )

= −
−

−
=

=

 (2)

where yi is the true value of each sample, y i
  is the value predicted by 

the model, and yi  is the mean output value. RMSE values were also 
reported.

Data inclusion: At the spectra-level, all spectra identified as having a G 
peak (a maximum in the range of 1500 cm−1 < x < 1700 cm−1 with an SNR 
of >8)  were included in the analysis. Spectra not containing a G peak 
were attributed to poor laser focusing. At the individual sample level, 
all samples with >64 viable spectra, a properly recorded accompanying 
current/time profile, and which did not cause an explosion of the quartz 
tube were included in the analysis.

Bayesian Optimization: Bayesian model-based optimization was 
implemented in R using the package mlrMBO.[51] Graphene yield (GY) 
was defined as the objective function, and the sample pretreatment, 
voltage, pulse time, mass, and capacitance of the flash Joule heating 
reaction were defined as the inputs. All experiments were performed 
with carbon derived from pyrolyzed rubber tires. The default RF-R with 
500 trees was defined as the surrogate model. Since the number of 
experiments was low (N = 30), the acquisition function was modulated 
between the expected improvement (EI) and augmented expected 
improvement (AEI) functions in a human-in-the-loop configuration to 
encourage exploration of the parameter space.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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