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a b s t r a c t

Responsible processing of complex waste streams, especially through resource recovery and upgrading, is 
essential to lessen the environmental and societal impacts of materials production and disposal. Upcycling 
waste into materials that have higher value than their original form, and urban mining, the recovery of 
metals from electronic waste, are two recent strategies in waste management. Sustainable cradle-to-grave 
manufacturing means recovering resources that would otherwise contaminate the planet. Here, we discuss 
upcycling of plastic, rubber, and related carbon waste streams into graphene, as well as the recovery of 
precious metals and rare earth elements, while removing toxic heavy metals, all by using flash Joule 
heating. This article provides a brief overview of the current state of upcycling and urban mining as it 
applies to materials conversion, recovery, or nanomaterial synthesis, with a concluding perspective high-
lighting the considerations, opportunities, and challenges that accompany upcycling and urban mining 
research.

© 2023 Elsevier Ltd. All rights reserved. 

Introduction

As populations and living standards increase globally, and pro-
duction costs of consumer goods broadly decrease, solid waste 
generated from plastics, electronics, batteries, solar cells, per-
fluoroalkyl substances, fly ash, rubber, automobiles and appliances 
produce large amounts of hazardous byproducts upon landfill [1]. 
These waste streams are resource rich, offering high concentrations 
of valuable metals or commodity chemicals [2]. In the United States, 
140 million tons of solid waste were landfilled in 2018, and an es-
timated 67 million tons of plastics were recycled [3].

Recycling is challenged by the complexity and contamination of 
waste streams, requiring sorting, dismantling, washing, and other 
time-, labor-, and resource-intensive pre-processing steps. Waste is 
composed of dozens of different materials that are difficult to se-
parate and recover in a cost-effective manner [4]. Upcycling, how-
ever, converts waste streams into products of higher value than their 
starting forms [5]. Urban mining is a term first introduced in the 

1980s in Japan to describe the recovery of precious metals from 
municipal waste streams such as automobiles and appliances, elec-
tronics waste (e-waste), and batteries [6]. ‘Urban mining’ most often 
refers to e-waste, especially landfilled circuit boards or batteries, and 
the concept has steadily gained popularity. Often these waste 
streams have high concentrations of critical resources, however, 
device fabrication complicates the liberation of the metals so that 
they can not be efficiently separated. Recent research in nanoma-
terials and nanotechnology has focused on the use of upcycling and 
urban mining to lower the cost and environmental burden of high- 
value products, which we highlight in this prespective.

Flash Joule heating

Flash Joule heating (FJH) for the synthesis of graphene was de-
scribed by Luong et al. in 2020, in which large amounts of current are 
discharged from a bank of capacitors, passing through a low-re-
sistance carbon feedstock, reaching temperatures in excess of 
3000 K in milliseconds while sustaining the high temperature for 
only seconds or less (Fig. 1a) [7,8]. This high temperature converts 
amorphous carbon into high quality graphene by providing sufficient 
energy to rearrange the carbon bonds to a thermodynamically fa-
vored sp2-hybridization state. FJH is a scalable and efficient method 
of turbostratic graphene production without solvent, catalyst, or 
inert gas use [9]. Electricity required to transform 1 ton of 
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amorphous carbon into graphene using FJH is calculated to cost $30 
to $161 depending on the starting source [7]. A variety of other na-
nomaterials can also be produced by FJH, including boron nitride 
[10], carbon nanotubes [11], corundum nanoparticles [12], doped 
graphene [13], and more.

FJH for upcycling

Wastes such as food, mixed plastics, biochar, asphaltenes, and 
tires have been shown to produce graphene when subjected to FJH 
[7,14,15]. The FJH reaction can produce significant volatiles that 

Fig. 1. Upcycling by flash Joule heating. a) A scheme showing a general strategy to upcycle conductive waste streams into high value turbostratic graphene or other nano-
materials using flash Joule heating. b) Raman spectra characterizing PFAS contaminated waste upcycled into nanomaterial products through flash Joule heating, where fluorinated 
amorphous carbon, fluorinated nanodiamond, fluorinated flash graphene, and fluorinated concentric carbon are abbreviated FAC, FND, FFG, and FCC, respectively. c-e) 
Transmission electron microscope images of PFAS contaminated waste upcycled into nanomaterials products through flash Joule heating. An inset fast Fourier transform (FFT) is 
inlaid in each image. f) Tensile and compressive strength testing of flash graphene (FG) added into cement at various loadings. g) Cradle-to-gate life cycle assessment showing the 
cumulative energy consumption of the upcycling of end-of-life vehicle waste plastic into graphene by FJH, compared to graphene produced by other methods. (a) Printed with 
permission [67]. Copyright 2021, American Chemical Society. (b-e) Printed with permission [19]. Copyright 2021, American Chemical Society. (f) Printed with permission [7]. 
Copyright 2020, Springer Nature. (g) Printed with permission [21]. Copyright 2022, Springer Nature.
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outgas when lower carbon-content feedstocks are used. Plastic and 
tire pyrolysis ashes have been tested and shown to produce higher 
mass conversions of graphene since those materials have already 
been subjected to volatilization [16,17]. Machine learning can be 
used to map the FJH reaction parameter space through model based 
optimization, obtaining graphene qualities that are superior to 
human optimized methods [18]. Polyfluoroalkyl substances (PFAS) 
are hazardous materials that are usually removed from water 
through sorption onto activated carbon. FJH treatment upcycles PFAS 
and other fluorine compounds into fluorinated products including 
amorphous carbon, nanodiamonds, graphene, and concentric car-
bons, which are onion-like carbon spheres made of stacked sp2- 
hybridized layers [19]. The phase, morphology, and fluorine content 
of the product is controllable by tuning the FJH reaction parameters 
such as duration, peak current, and precursor material (Fig. 1b-e).

When the FJH feedstock is not conductive, such as insulating 
plastics, amorphous carbons such as carbon black or metallurgical 
coke can be added to allow current discharge required for FJH. The 
amount of conductive additive can be decreased to as low as 5 wt% 
when a two-step FJH process is used to upcycle [20]. First a low- 
current discharge carbonizes the plastics, which undergoes a pyr-
olysis-like process where volatile monomers, oligomers, and syngas 
are emitted. This leaves an amorphous carbon char that is then 
conductive enough to undergo high current FJH. This two-step 
process can upcycle mixed and dirty waste plastics into high quality 
turbostratic graphene [20,21]. Introduction of alkali metal salts to act 
as blowing, etching and pore proppant agents allows for the con-
version of mixed waste plastics into high surface area holey and 
wrinkled graphene [22]. Specific surface areas up to 874 m2/g are 
possible, compared with surface areas of 50–240 m2/g for non-ac-
tivated flash graphene.

Applications of graphene products upcycled from waste mate-
rials through FJH include composites with cement, polyurethane 
foam, vinyl esters, and epoxies (Fig. 1f). Holey and wrinkled flash 
graphene has been studied as a competitive metal-free hydrogen 
evolution reaction electrocatalyst, and as a Li-metal battery anode 
that affords rapid cycling because of its high surface area and por-
osity [22,23]. Flash graphene, compared with commercial graphenes, 
is many times more dispersible in composites as a result of the 
turbostratic stacking of the layers and can be used as an effective 
lubricant [7,16,24]. FJH can cyclically upcycle graphene containing 
polymer-nanocomposites without impacting the quality of the pro-
duct [21]. The total resource consumption and environmental impact 
of synthesizing 1 kg of graphene by FJH has been compared with 
commercial production methods using physical or chemical ex-
foliation of graphite (Fig. 1g). FJH was determined to use up to 88% 
less energy, 97% less water, and emit up to 85% less emissions than 
other graphene production methods [21].

FJH for recycling, upcycling and resource recovery is being scaled 
up industrially and is becoming more widespread in research. For 
example, Huang et al. used fluorine-contaminated hazardous carbon 
waste from aluminum production as a feedstock for FJH [25]. Dong 
et al. leveraged FJH to regenerate Li-ion battery anode graphite, re-
moving the solid electrolyte interface, repair defects, and increase 
conductivity to levels higher than commercial graphite [26]. Fun-
damental studies of the FJH process through simulation of heat 
distribution, flux, and energy consumption during the reaction and 
upon scaling up has also been carried out [27]. Qiu et al. produced a 
synergistic Ag, Co, and C electrocatalyst for oxygen reduction reac-
tions using FJH [28], while Wei et al. used CuRu alloy decorated CNTs 
synthesized by FJH for efficient water splitting [29]. Graphene-fer-
roferric oxide nanocomposites were prepared from lignin by FJH and 
used for electromagnetic wave adsorption by Chen et al [30]. Zhu 
et al. synthesized N-doped graphene by FJH for use in high-stability 
supercapacitors [31].

FJH for urban mining

Metal-containing solid waste streams can become sustainable 
resources because they often contain precious and rare earth metals 
[32]. The concentration of Au in e-waste is higher than that in mined 
Au ores [33]. The recovery of these valuable metals from solid wastes 
offers an alternative as critical resources become exhausted, and 
mitigates the negative environmental impact of traditional mining 
from ores and downstream solid waste disposal [34]. Urban mining 
faces many refining challenges similar to the mining of mixed virgin 
ores. Traditional urban mining methods use extractive metallurgy, 
mainly pyrometallurgical and hydrometallurgical processes to lib-
erate metals from encased platforms like printed circuit boards 
[35,36]. Hydrometallurgical processes are more selective and leach 
metals from waste materials using specific strong acid mixtures 
known as lixiviants, but secondary aqueous waste streams of strong 
acid are generated [37].

The FJH process enables the ultrafast, water-free recovery of 
precious metals and removal of hazardous heavy metals from e- 
waste [38]. Metal recovery by FJH is composed of three steps: the 
FJH reaction for metal evaporation, gas transport by a vacuum 
system, and condensation of volatiles in a cool zone (Fig. 2a). Printed 
circuit board e-waste is finely ground and mixed with carbon black 
or metallurgical coke as the conductive additive (Fig. 2b). The 
sample temperature ramps to ∼3400 K in milliseconds during FJH, 
affording evaporative separation of precious metals (Fig. 2c). The use 
of salts as additives converts metals into their halides, lowering their 
resulting vapor pressures, and producing recovery yields of >  80% for 
Rh, Pd, Ag, and >  60% for Au (Fig. 2d). The toxic heavy metals in 
electronic waste, including Cr, As, Cd, Hg, and Pb, are also removed 
(Fig. 2e), leaving a final waste with minimal metal content, accep-
table even for agricultural soil use. Urban mining by FJH has an 
energy consumption of ∼939 kWh ton-1, which is 80 × to 500 × less 
energy consumptive than traditional smelting furnaces.

In addition to precious metals, rare earth elements (REEs) are 
critical materials in electronics and renewable energy technologies 
[39]. REEs recovery from secondary wastes, compared with mining 
virgin REEs, enables a circular economy [40]. The applicable wastes 
include coal combustion residual coal fly ash (CFA), bauxite residue 
(red mud) from aluminum production, and e-waste [41,42]. Present 
methods for REEs recovery suffer from lengthy purifications, low 
extractability, and high waste stream impacts. The FJH process acts 
as an activation strategy for improving REEs extractability from 
wastes [43]. Before FJH, the solid waste is mixed with carbon as the 
conductive additive. The REE leachability from FJH-activated CFA is 
improved by 187–206% in mild acid leaching conditions (1 M HCl, 85 
ºC) and, most importantly, FJH enables a high REE recovery yield 
even by dilute acid leaching (e.g., 0.1 M HCl, Fig. 2f). For individual 
REEs, acid leachability is improved between 170% and 230% (Fig. 2g). 
FJH thermally converts hard-to-dissolve REE phosphates to REE 
oxides with high thermodynamic solubility (Fig. 2h). The rapid 
heating and cooling also cracks the glass that encases REEs in CFA 
formed during the coal burning process, rendering the REEs aqu-
eous-acid-accessible. FJH can also recycle graphite anodes, re-
covering Ni, Co, Mn, and Li while producing value-added graphite 
anodes, which outperform current recycled graphite [44].

While FJH presents a highly efficient method for synthesis, up-
cycling, purification, and urban mining, some disadvantages and 
challenges remain to be solved. As discussed in Section 2.1, con-
ductive additives may need to be mixed with non-conductive feed-
stocks such as plastics, which may increase the cost. Because of the 
rapid kinetics of the FJH reaction, the particle size of the feedstock 
can significantly impact the quality of produced nanomaterials or 
the recovery yield of metals. Therefore, some milling or grinding of 
the feedstock is an important step to optimize the process and 
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improve product homogeneity. Lastly, process scale-up to multi- 
kilograms per day has so far only been demonstrated for graphene 
synthesis from coal, not waste materials or urban mining processes, 
which may require further optimization.

Recent upcycling and urban mining trends

The upcycling of waste plastics, biomass, or biochar into graphitic 
carbon materials such as graphene, carbon nanotubes, bamboo-like 
carbon nanofibers, or graphite using thermal annealing, arc dis-
charge, pyrolysis, microwave-assisted decomposition [45], and other 
techniques has become quite popular (Fig. 3a) [46–50]. Particular 
focus should be given to scalable methods that do not require the 
sorting of plastics or the use of solvents, catalysts, or inert gases, to 
reduce process burdens and external costs. E-waste, such as printed 
circuit boards, is being upcycled to produce Au, Ag, Cu, metal oxides, 

and other materials for a variety of demonstrated applications 
(Fig. 3b) [51–56]. Urban mining and upcycling of other metal-rich 
waste streams such as pickling liquor and furnace slag from steel 
making, CFA, and solar cell, cable, or battery waste, is also being 
explored [57–61]. Bauxite residue is also being investigated as a 
source for metal nanoparticles and nanowires on a laser-induced 
graphene support [62].

Traditional hydrometallurgical and pyrometallurgical processes 
are being improved by adding advanced photocatalysis or using new 
thermodynamic reactions. Chen et al. reported the selective recovery 
of precious metals through photocatalysis [63]. Acetonitrile, di-
chloromethane, and TiO2 powder photocatalytically extract precious 
metals from e-wastes and ores with high selectivity and high 
purity >  98% (Fig. 4a-b). The process has been scaled up to kilo-
grams, with the catalyst reused >  100 times, demonstrating poten-
tial industrial compatibility. Stinn et al. proposed the selective 

Fig. 2. Urban mining by flash Joule heating. (a) Schematic of the evaporative separation system composed of FJH apparatus for metal evaporation, vacuum system for mass 
transport, and cold trap for volatiles condensation. (b) Picture of a discarded PCB. Scale bar, 5 cm. Inset, the mixture of carbon black with PCB powder. Scale bar, 2 cm. (c) Vapor 
pressure-temperature relationship of precious metals and carbon. (d) Recovery yield of precious metals by using the mixture of NaF, NaCl, and NaI as additive. The recovery yield 
(Y) is the recovery yield of precious metal with halide additives, Y0 is recovery yield without the halide additives, so Y/Y0 indicates the improvement of yield with the halide 
additive. The dashed line represents Y/Y0 = 1. (e) Removal efficiency and collection yield of heavy metals. The removal efficiency is calculated by: 1 ( )Metals remaining in e waste

Total initial metals in e waste
. The 

collection yield is calculated by: Metals recovered in cold trap
Total initial metals in e waste

. The collection yield is higher than the removal efficiency due to the metals condensing in areas other than the cold trap. 

For d and e, the yields are the average of three independent FJH reactions. (f) pH-dependent REEs leachability from the Class F CFA (CFA-F) raw materials and the activated CFA-F. 
(g) HCl-leachable individual REEs contents (1.0 M, 85 °C) from activated CFA-F and the increase in recovery yield. Y0 represents the yield by 1.0 M HCl leaching the CFA raw 
materials, and Y represents the yield by HCl leaching the activated CFA. Error bars in f and g represent the standard deviation where N = 3. (h) Calculated dissolution curves of 
Y2O3, YPO4, La2O3, and LaPO4 with a mass of 1 g in 100-mL solution. Cl- is used to balance the charge. (a-e) Printed with permission [38]. Copyright 2021, Springer Nature. (f-h) 
Printed with permission [43]. Copyright 2022, American Association for the Advancement of Science.
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Fig. 3. Upcycling processes of waste plastics and electronic waste. a) Schematic of a proposed mechanism in which microwaves (MW) and FeAlOx upcycle high density 
polyethylene into hydrogen gas and multiwalled carbon nanotubes. A simulation of the temperature of the system during MW heating, and a scanning electron microscope (SEM) 
image of the produced multiwalled carbon nanotubes are shown on the right side. b) Schematic of a method to upcycle electronic waste into copper nanoparticles using ultrasonic 
separation of copper foil from the printed circuit boards, followed by use of environmentally available chemicals to synthesize the copper nanoparticles, at a 6 times lower cost 
than commercial methods. A TEM image of the produced copper nanoparticles is shown in the bottom left. (a-e) Printed with permission [47]. Copyright 2020, Springer Nature. (f- 
h) Printed with permission [52]. Copyright 2018, Elsevier.
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sulfidation of metal compounds to improve their separation factors 
[64]. By controlling parameters including gas partial pressure, 
flowrate, and carbon addition, the target metal from a mixed metal- 
oxide feed can be selectively sulfidized (Fig. 4c), enabling the im-
proved separation of metals compared with liquid methods. This has 
been applied to recycling of Ni-Mn-Co lithium ion battery cathodes 
and (Nd,Pr,Dy)-Fe-B magnets (Fig. 4d-e) and the sulfidation process 
potentially leading to 60–90% reduction in greenhouse gas emis-
sions.

Recycling of Fe and Al is critical to closing material supply loops 
and increasing sustainability, but impurities during remelting de-
grade the recycled product quality, resulting in downcycling. Judge 
et al. reported the electrorefining of molten Fe [65]. In the electro-
refining process, the molten Fe is decarburized by applying an 
electromotive force between it and a slag electrolyte (Fig. 4f), evol-
ving CO and producing ultra-low-carbon steels using little energy 
and no reagents. Lu et al. proposed solid-state electrolysis for up-
cycling Al scrap [66]. In the process, Al scrap acts as the anode, pure 
Al as the cathode, and a molten salt composed of a mixture of alkali 
chlorides and alkaline earth metal chlorides as the electrolyte 
(Fig. 4g). During electrolysis, Al is dissolved from the anode and the 
refined Al, with purity comparable to virgin Al, is deposited on the 
cathode, while Si, Cu, and Fe impurities are separated out (Fig. 4h). 
Moreover, the energy consumption of the recycling process is 50% 
less than primary Al production.

Summary and Outlook

Upcycling and urban mining by FJH and other techniques re-
present a powerful new paradigm in the synthesis of nanomaterials. 
Many challenges remain, but some important considerations can be 
applied by academic and industrial chemists, engineers, or materials 
scientists when leveraging upcycling or urban mining: 

1. Process scalability, simplicity, reproducibility, and overall cost are 
directly tied to the likelihood of eventual implementation. Use of 
authentic waste streams rather than lab generated substitutes 
can illuminate unforeseen complications that could arise during 
implementation. For example, commercially obtained plastics 
pyrolysis ash can be contaminated with heavy metals, which 
impacts the process optimization and economic viability of its 
upcycling.

2. Life cycle assessment and technoeconomic analysis are powerful 
tools to calculate burdens, such as energy and water use or 
greenhouse gas emissions, associated with materials recycling or 
production process. Burdens for new or proposed processes 
should be compared with current methods to identify steps that 
require further optimization and inform scale-up considerations. 
Similarly, products of upcycling and urban mining should be 
compared with current methods and commercial products to 
benchmark quality. When possible, application of the upcycled 
product should be demonstrated to display value of the process 
and quality of the product.

3. Public policy and grant funding focused on simple and scalable 
upcycling and urban mining of realistic waste streams could 
further encourage advancement of the field. Collaboration and 
communication between researchers and waste generating, 

collection, and processing industries could speed reclamation of 
emerging waste streams and improve understanding of current 
methods, challenges, and opportunities. For example, recent 
collaboration between environmental scientists, funding agen-
cies, and chemists has accelerated efforts to remediate and up-
cycle hazardous perfluorinated alkyl substances (PFAS) [25].

4. Planned design and assembly of electronics, batteries, auto-
mobiles, and other products with a focus on better end-of-life 
processibility for recycling, upcycling, and urban mining or the 
use of fewer materials, can lower the barrier of entry for resource 
recovering processes. For example, separation of Li-ion battery 
components is a bottleneck for recycling efforts complicated by 
different pouch or cylinder constructions. Battery components 
should be constructed to ease disassembly.

In conclusion, waste materials present an abundant and low-cost 
resource to upcycle into nanomaterials or to supply valuable metals. 
Recent use of FJH represents a simple and multipurpose method for 
upcycling and urban mining, but require further advancement and 
study to realize a future of responsible waste management and re-
source recovery.
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