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DC circuit description  

 
 
Figure S1. Simplified scheme of the DC-FJH setup. Detailed description of the circuit was 

reported in previous work.1 
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Alternating current flash Joule heating (AC-FJH) Equipment Description  

 
Figure S2. Pictures of the AC-FJH equipment for pretreating PW samples. a) The sample holder 

is placed in a plastic desiccator for protection of the operator. The 10 amp breaker box and 

electrical ports into the desiccator are indicated by labels. b) A close-up view of the sample holder, 

sample, and copper electrodes. c) Circuit diagram of the AC-FJH equipment.  

 

The AC setup is comprised of a plastic desiccator for safety, a sample holder and two 10 amp 

breaker box.  
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CAUTION: Flash Joule heating (FJH) involves high current, which may cause electrical 

shock or even electrocution. This list is not intended to be comprehensive, but demonstrative 

of the protocols needed to minimize risk.  

• Samples subjected to FJH must be enclosed in a container or fume hood for safety. There 

is chance of tube breakage during the FJH.  

• Vacuum is required to remove volatiles generated upon FJH. Volatiles can ignite and catch 

fire if not properly vented.  

• All wires must be enclosed and well insulated.  

• All wires must be rated for high current.  

• It is recommended that users use double rubber gloves when working with the FJH system.  

• One hand rule. Use only one hand when working on the system, with the other hand not 

touching any grounded surface. 

• Use an IR protective googles to protect your eyes from the bright flash. Glasses designed 

for welding are generally suitable because they effectively block infrared as well as 

ultraviolet. 

• Detailed safety measures for dealing with the DC-FJH system was included in previous 

work.1 

 

Raman Spectral Analysis  

Whenever the D-band is present, there is a weaker D' (disorder) band at ~1620 cm-1 that usually 

appears as a shoulder on the high frequency side of the G-band causing a slight asymmetry. The 

D'-band is a weak longitudinal optical phonon band  that occurs with the D-band and will always 

be present when the D-band is large.2 The D'-band does not depend on the type of edge.  Unlike 
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the much stronger D-band, zigzag edges will contribute to the D'-band.3  Since the intensity of the 

D'-band is much weaker that of the D-band and very close to the larger G-peak, the zigzag edge 

contribution is often too small to observe it.  Because AC-FG usually has higher D-band intensity, 

some of the AC-FG Raman spectra show a slight band that is outside the green Lorentzian fitted 

curve due to the presence of the D' bulge in the G band.  

 

Figure S3. Raman fitting of the AC-FG from PET. 
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Figure S4. Raman fitting of the AC-FG from HDPE. 

 

Figure S5. Raman fitting of the AC-FG from PVC. 
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Figure S6. Raman fitting of the AC-FG from LDPE. 

 

Figure S7. Raman fitting of the AC-FG from PP. 
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Figure S8. Raman fitting of the AC-FG from PS. 

 

Figure S9. Raman fitting of the ACDC-FG from PET. 
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Figure S10. Raman fitting of the ACDC-FG from HDPE. 

 

Figure S11. Raman fitting of the ACDC-FG from PVC. 
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Figure S12. Raman fitting of the ACDC-FG from LDPE. 

 

Figure S13. Raman fitting of the ACDC-FG from PP. 
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Figure S14. Raman fitting of ACDC-FG from PS. 

 

Key Indicators of the Formation of High Quality tFG from Raman Spectra  
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Garlow (et al.) and Niilisk (et al.) both show the 2D peak at the same location (after correcting for 

dispersion), and they have verified by electron microscopy the high quality of the CVD graphene, 

as shown in Table S1 of the Supplementary Information of our own paper.1,6,7 

4.  The 2D/G peak height ratio is an indicator of the number of turbostratic layers as long as it also 

fits the criteria of 2 and 3, a good Lorentzian fit that is not too broad and at the correct frequency 

for the peak.  The 2D/G ratio is a less sensitive indicator of quality than the D/G ratio.8 
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AC vs DC pretreatment  

 

Figure S15. Characteristic Raman spectra of PW FG produced via direct DC-FJH without the AC 

pretreatment as reported from reference 1.  
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Figure S16 shows TGA of FG obtained via DC flashing of HDPE at different voltages compared 

to FG obtained via AC-FG. For each of the DC-flashed sample, HDPE was flashed 5 times at the 

specified voltage with a discharge time of 500 ms. A DC-FJH pretreatment of plastic was found 

to insufficient for full carbonization of plastic waste compared to AC-FG, which shows no residual 

plastic in TGA.  

 

Figure S16. TGA (air, 15 °C/min) of HDPE-derived FG prepared at different voltages. 
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Tarping IR and UV light during FJH 
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Figure S17. a) Picture of the nanoceramic IR/UV reflective film. b) Picture of the flashing quartz 

tube with and without the film. Raman fitting of ACDC-FG from HDPE. c) Raman fitting of 

ACDC-FG from HDPE with reflective film showing poor Lorentzian fitting (R2 = 0.96). d) Raman 

fitting of ACDC-FG from HDPE without reflective film showing good Lorentzian fitting (R2 = 

0.99) 

 

IR spectrometer components  

 

 

Figure S18. Components of the IR spectrometer built in-house for temperature determination. a) 

Schematic of the spectrometer. The grating box scatters light from 600-1000 nm and collects the 

spectrum with a 16-channel photodiode array. The signal from the photodiode arrays is amplified 

by the amplification board from 16 op-amps. The signal is then collected by the DAQ PCI-e 6320. 
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The computer processes the data to the spectrum and fits it with black body radiation curve. The 

system is enclosed inside a copper mesh to reduce noise. b) Photo of the spectrometer. 

 

Figure S19. Recording of the current passing through the AC-FG during DC-FJH process 

 

 

 

 

 

 

 

 

 

 

0 100 200 300 400 500

0

50

100

150

200

C
ur

re
nt

 (A
)

Time (ms)



S18 
	

TGA of FG 

 

 

Figure S20. TGA (air, 15 °C/min) of PET before and after AC-FJH. The thermogram for FG 

derived from PET goes to 0 wt% at 790 °C showing that the ~10 wt% nanoclays residue in PET 

has been volatilized in the flashing process.  
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XRD of tFG from Different Plastics  

 

Figure S21. XRD of ACDC-tFG obtained for different plastics.  
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XPS of FG from different plastics  

 

Figure S22. a) Survey scan and b) high resolution C1s  XPS  FG from PVC showing no deteted 

chlorine in the FG matrix.  
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Layer count and interlayer spacing using TEM images  

 

Figure S23. Turbostratic layers count of AC-FG (n = 100). 

 

 

Figure S24. Interlayer distance of AC-FG.  
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Figure S25. Turbostratic layers count of ACDC-tFG (n = 100). 

 

 

Figure S26. Interlayer distance of ACDC-FG. 
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Cost of converting graphene to plastic 

To calculate the power needed to produce FG from PW, the resistance across the PW sample was 

recorded at different times. Equation 1 was used to calculate the power. 

P = V2 / R  (1)  

Where P is power  

V is the voltage, which is 120 V throughout the experiment.  

R is the resistance 

The calculated power was then integrated overtime to obtain the consumed kWh.   

.  
Figure S27. Power require to carbonize 0.5 g of mixed plastic in the AC system  
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industrial price of electric energy in Texas, USA is $0.02/kWh, the total cost for carbonizing 1 ton 

of plastic is ~ $107.   

kJ conversion: 5.8 W×h/g is ~ 20880 J/g (20.9 kJ/g). 

Price of DC flashing of graphene from the AC system. 

• The flashing voltage was set to 110 V for 100 mg.  

• The discharge time was found to be 0.1 s. Initial resistance is 1 Ω and final resistance is 

0.8 Ω.  

• The total power consumed is 3.6 Wh/g, which is around 13 kJ/g. 

• The total cost is $65/ton to upgrade the quality of graphene 

Price of the AC and DC process combined 107 (AC) + 16.25 (DC) = $124/ton of plastic  

 
Table S1. Average price of virgin and recycled plastic in Q4 of 2019  
 

Plastic Type 
PET 

($/ton) 

HDPE 

($/ton) 

LDPE 

($/ton) 

PP 

($/ton) 

PS 

($/ton) 

PVC 

($/ton) 

Virgin Plastic 1405 1080 1025 1036 1477 780-845 

Recycled 

Plastic 
1513 1647 1173 1130 2417 777 
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Collecting and analyzing the waxes from FJH plastic waste 
 
To analyze the waxes generated during the flashing process, the waxes are collected in a glass 

wool trap. Upon FJH, the evolved gases and waxes are withdrawn by vacuum, and higher 

molecular weight waxes are trapped in the glass wool. Dichloromethane was used to extract the 

waxes for analysis. Schematic of the setup is shown in Figure S28a. Figure 28b shows a picture of 

the glass wool with wax deposited on it prior to IR analysis.  

 

Figure S28. a) Schematic of the glass wool trap to collect the waxes. b) Picture of the glass wool 

with waxes deposited on it after FJH plastics.  
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Analysis of the evolved gases  

 

Figure S29. Picture of the electrodes designed for gas capture upon FJH. The amount of hydrogen 

is estimated by recording the pressure change when cooling from room temperature to -196 °C. 

The estimate of the amount of hydrogen is reliable because it should be the only significant 

component at -196 °C, since methane has about 10 Torr vapor pressure at -196 °C. The hydrogen 

was then pumped off to allow the other gases to condense at the bottom. A small amount of 

methane would also be removed during the brief pump out. When the trap is warmed from -196 

°C to -78 °C (dry ice), the second fraction, which constitutes methane + 2 and 3 carbon moieties 

evaporates. The relatively slow rise in pressure upon removal from the liquid nitrogen suggests 

that methane is a minor component, but further analysis is needed using GC-MS to determine these 

proportions. 
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