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ABSTRACT: High-entropy oxide (HEO) including multiple
principal elements possesses great potential for various fields
such as basic physics, mechanical properties, energy storage, and
catalysis. However, the synthesis method of high-entropy
compounds through the traditional heating approach is not
conducive to the rapid properties screening, and the current
elemental combinations of HEO are also highly limited. Herein, we
report a rapid synthesis method for HEO through the Joule-
heating of nickel foil with dozens of seconds. High-entropy rocksalt
oxides (HERSO) with the new elemental combination, high-
entropy spinel oxides (HESO), and high-entropy perovskite oxide
(HEPO) have been synthesized through the Joule-heating. The
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synthesized HERSO with new elemental combinations proves to be a great promotion of OER activity due to the synergy of multiple
components and the continuous electronic structure experimentally and theoretically. The demonstrated synthesis approach and the
new component combination of HERSO provide a broad platform for the development of high-entropy materials and catalysts.
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H igh-entropy oxide (HEO) as an emerging class of
materials composed of multiple principal metallic
elements exhibits promising development potential in some
significant fields including basic physics,'~* mechanical proper-
ties,”” energy storage,” ' and catalysis.''~"* Compared with
the traditional doping strategy based on less-components, the
mixed components of HEOs sometimes cause extra properties
while averaging the properties of each principal metallic
element. For instance, Ceder et al. reported the improvement
of the capacity of lithium storage for HEO,® and Hu et al.
reported superior stability for catalytic methane combustion on
HEO."” Since the unique properties of HEOs benefit from the
interaction and entropy promotion of the different combina-
tions between multiple principal elements, exploring the new
elemental combinations of HEOs through rapid high-
throughput synthetic technology is necessary.

However, the synthesis method of HEOs previously reported
is mainly based on the heating treatment in muffle furnaces,
which requires a long time of heating, heating preservation, and
cooling."*™'® This synthesis approach is not conducive to the
high-throughput screening for synthesis parameters and
component combinations of HEOs. In addition, the elemental
combinations in HEOs are highly limited at present such as
high-entropy rocksalt oxides (HERSO) in which the studies are
only limited to this elemental combination of MgCoNiCuZn
because it is difficult to dissolve many other elements with
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different properties into the same oxide structure.”'’~*° For

instance, the large difference in ionic radius leads to the high
difficulty in the formation of single-phase HEOs due to the ionic
size effect in crystal, and the phase transition competition of
different structures at high-temperature also leads to the
difficulty increases in the formation of single-phase HEOs
such as the phase transition competition of rocksalt structure
and spinel structure.”"””” Therefore, developing a new rapid and
controllable synthesis strategy based on the concept of
shortening the heating treatment time greatly is highly desirable,
and meanwhile broadening the elemental combination of HEOs
can greatly stimulate the compositional advantages of high-
entropy materials.

Here, we present a new synthesis approach of Joule-heating
based on nickel foil for the rapid and high-throughput synthesis
of HEO:s. In just dozens of seconds, the Joule-heating of nickel
foil makes the precursor thermally decompose and meanwhile
causes the formation of HEOs. Through the utilization of the
Joule-heating technology and synthetic control of precursor, we
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Figure 1. (a) Schematic diagram of the preparation of high entropy oxide with different structure systems by Joule heating of nickel foil for various
studies as well as catalytic application. Gray balls represent oxygen, and the balls with other colors represent different metal elements. (b) The
temperature curve of nickel foil during Joule-heating (insert pattern: the picture of Joule-heating). Schematic diagram of multiple active sites and
synergistic catalysis on HEOs. (c) Schematic diagram of density of states (DOS) for different unary materials and high-entropy materials. (d) Total and
partial density of states for the synthesized (MgFeCoNiZn)O, FeO, CoO, and NiO. (e) The statistics of d-band centers in different metal sites of
(MgFeCoNiZn)O including Fe, Co, Ni, and the d-band center of unary oxides (FeO, CoO, and NiO).

synthesized a HERSO with a new combination
(MgFeCoNiZn)O, in which Fe*" is introduced into the rocksalt
structure. In addition, the successful synthesis of other HEOs
including HERSO (MgMnCoNiZn)O, HESO
(MgMnCoNiZn)Fe,0,, as well as (CrMnFeCoNi);0,_,,
HEPO La(CrMnFeCoNi)O,_, indicates the synthetic univer-
sality of Joule-heating based on nickel foil for HEOs. The
synthesized HERSO (MgFeCoNiZn)O exhibits great OER
activity (300 mV at 10 mA cm™?) compared with unary rocksalt
oxides due to the synergy of multiple active sites and continuous
electronic structure. Density functional theory (DFT) simu-
lation proves the great OER activity of (MgFeCoNiZn)O
according to the more continuous density of states (DOS) near
the Fermi level and lower AG of rate-determining step (RDS).
Moreover, DFT simulation exhibits a relatively linear relation-
ship between the d-band center and OER activity in the rocksalt
oxide system. In general, the synthesis approach of Joule-heating
and the study of OER activity based on HERSO system provide
a broad platform for the development of high-entropy materials
and efficient electrocatalysts.

The possible reasons for using furnaces as heating instruments
that take a long time are as follows. To ensure that the
temperature in the furnace cavity reaches the predetermined
value uniformly, it is necessary to make the heating rate low
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enough because the heating rate is too high to make the
temperature of furnace wires and furnace cavity consistent.
Therefore, to overcome the shortcomings of a long time of
traditional heating treatments in muffle furnaces, we developed a
new rapid heating method based on the Joule-heating of metal
foil. Here, nickel foil is selected as the carrier of Joule-heating
based on the following considerations. First, the metal nickel
among cheap metals has the moderate conductivity, plasticity,
and melting point so that nickel foil can be folded into some
shapes, and reach a high temperature at not high current by
Joule-heating. Second, the metallic activity of nickel rank low
among metals, which would prevent many metal oxides from
being reduced at high-temperature (Table S1). For instance, Hu
et al. reported the synthesis of HEOs through the rapid heating
of carbon nanofibers, but many metal oxides would be reduced
by carbon nanofibers at high temperatures in the argon
atmosphere.”” The synthesis of HEO through the Joule-heating
of nickel foil is simple and fast. The hydroxide precursor powder
including various metal elements prepared by coprecipitation
was placed in the folded nickel foil, and then the HEO formed
through the thermal decomposition of the hydroxide precursor
by the Joule-heating at a certain current in the argon atmosphere
for tens of seconds (Figure la, Figures S1—S3). As shown in
Figure 1b, the Joule-heating synthesis of nickel foil can reach
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Figure 2. (a) SEM image of the synthesized (MgFeCoNiZn)O. (b) XRD pattern and refined result of (MgFeCoNiZn)O. (c) HADDF image of
(MgFeCoNiZn)O (insert pattern: FFT image). (d) Elemental mapping of (MgFeCoNiZn)O. (e) Near atomic elemental mapping of
(MgFeCoNiZn)O. (f) HRTEM images along [100], [111], and [110] axis and corresponding IFFT images, SAED patterns, atomic strain

distribution of (MgFeCoNiZn)O.

about 1000 °C of high temperature, and a heating and cooling
rate of hundreds of °C s™'. Based on this Joule-heating
technology, a series of HEO systems including rocksalt oxides
(AO), spinel oxides (AB,O, and A;0,), and perovskite oxides
(ABO;) are synthesized. Moreover, this synthetic approach and
preparation of various HEOs also exhibit potential application in
kinds of study fields such as materials exploration, materials
screening, electrocatalysis, and energy storage. In particular, the
HEOs synthesized via this technology exhibit high study
potential in electrocatalysis such as OER due to the multiple
active sites and multiple elements synergism.

As shown in Figure lc, compared with unary materials, the
high-entropy materials have a more continuous electronic
structure due to the almost infinite coordination combination in
high-entropy materials, which would expand the range of
adsorption energy and make the adsorption more continuous to
produce additional electrocatalytic properties. Therefore,
relying on the Joule-heating technology, we have designed a
new HERSO (MgFeCoNiZn) by introducing the Fe component
with high OER activity and predicted the electronic structure
and possible electrocatalytic contribution by DFT simulation.>®
Compared with unary oxide (FeO, CoO, and NiO), HERSO
(MgFeCoNiZn)O shows the more continuous density of states
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(DOS) especially near Fermi-level, disperse d-band centers, and
Bader charges (Figure 1d,e and Figures S4 and SS). The
continuous electronic structure may produce some active sites
with high activities according to the volcanic pattern theory.
The HERSO (MgFeCoNiZn)O have been synthesized by the
Joule-heating of nickel foil at 30 A for 30 s. The temperature
curve with the time exhibits a high heating rate (~665 °Cs™") as
well as a cooling rate (~372 °C s™'), and a holding temperature
of about 1000 °C (Figure 1b). The synthesized
(MgFeCoNiZn)O shows the morphology of irregular-shaped
particles with an average size of 700 nm from the scanning
electron microscope (SEM) image and shows the rocksoalt
structure without impurity according to the fitting X-ray
diffraction (XRD) pattern (Figure 2a,b, Figure S6, Table S3).
The high-angle annular dark-field (HAADF) image exhibits the
atomic arrangement of (MgFeCoNiZn)O with rocksalt
structure along [100] axis (Figure 2c). The elemental mapping
at low and high magnification shows that the distribution of
various elements including O, Mg, Fe, Co, Ni, and Zn are
uniform at the particle scale and atomic scale (Figure 2d,e). The
results above fully prove that HERSO with the new elemental
combination (MgFeCoNiZn) has been successfully synthesized.
Also, energy dispersive X-ray spectroscopy (EDS), X-ray
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Figure 3. (a) Schematic diagram of rock salt oxide with single-phase forming driven by entropy-increasing. (b) XRD pattern of (MgFeCoNiZn)(OH),
precursor under Joule-heating with different currents. (c) Partial XRD pattern of (MgFeCoNiZn)(OH), precursor under different Joule-heating
currents compared with unary rock salt oxide (FeO, CoO, and NiO). (d—f), XPS data of Fe-3d (d), Co-3d (e), and Ni-3d (f). (g—i), Fourier-
transformed k*-weighted EXAFS data of Fe—K edge (g), Co—K edge (h), and Ni—K edge (i). (The red, green, and blue coordination polyhedrons
represent the coordination structures of Fe—O, Co—0, and Ni—O. The purple coordination polyhedron represents the M-M* coordination structure

of a random metal element in MgFeCoNiZn.)

photoelectron spectroscopy (XPS), and the Raman result also
prove the successful synthesis of (MgFeCoNiZn)O (Figures
S7-S89). To further characterize the synthesized (MgFeCo-
NiZn)O along the different axes, the high-resolution trans-
mission electron microscopy (HRTEM) image, the selected
area electron diffraction (SEAD) pattern, and the geometric
phase analysis (GPA) are analyzed in detail. As shown in Figure
2f, the HRTEM images and corresponding IFFT images show
the atomic arrangement, along the three basic axes of rocksalt
structure including [100], [111], and [110] axis, which is the
same as the theoretical atomic arrangement. Moreover, the
SAED patterns and the crystalline planes marked along [100],
[111], and [110] axes are consistent with the corresponding
crystalline planes based on the HRTEM images. The atomic
strain distribution pattern based on GPA shows uneven strain, in
which there are many discontinuous red compressive strain
regions caused by the addition of Fe** with a larger ionic radius.
In addition, the synthetic process of HERSO (MgFeCoNiZn)O
is analyzed and simulated in detail (Figures S10—S13).

The formation mechanism of HERSO (MgFeCoNiZn)O
with a single-phase is studied in detail. Briefly, with the gradual
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increase of synthesis temperature, the hydroxide precursor
experiences the thermal decomposition process, then transform
into two structure of rocksalt structure and spinel structure, and
finally transform the rocksalt structure at a higher temperature
with single-phase driven by entropy (Figure 3a—c and Figure
S14). According to the traditional crystallographic theory, the
lattice parameters are positively related to the ionic radius. The
average value of the ionic radius of the five metallic elements
among (MgFeCoNiZn)O is 73.5 pm compared with 74.5 pm of
Co”" and 69.5 pm of Ni** indicating that the lattice parameters
(a=b=c) of (MgFeCoNiZn)O should be slightly lower than
that of CoO (Figure 3c and Table S4). Therefore, the XRD
peaks of (MgFeCoNiZn)O with successful synthesis should be
higher slightly than that of CoO compared with CoO and NiO.
The XRD peak (200) of the sample synthesized at 15 A is in the
middle of CoO and NiO, and the XRD peak (200) of the sample
synthesized at 30 A is higher slightly than that of CoO indicating
that Fe?* with the largest ionic radius is not completely dissolved
in rocksalt structure at 15 A. Compared with the previous
reports, Fe*" is dissolved into HERSO for the first time through
the regulation of precursor in this work because Fe*" is easy to be
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Figure 4. (a—c) TEM image (insert pattern: IFFT image) (a), XRD pattern (indexed to CoO (powder diffraction file PDF#71—1178)) (b), and
elemental mapping (c) of (MgMnCoNiZn)O. (d—f) TEM image (insert pattern: IFFT image) (d), XRD pattern (indexed to MgFe,0, (powder
diffraction file PDF#88-1935)) (e), and elemental mapping (f) of (MgMnCoNiZn)Fe,0,. (g—i) TEM image (insert pattern: IFFT image) (g), XRD
pattern (indexed to Fe;O, (powder diffraction file PDF#75-0449)) (h), and elemental mapping (i) of (CrMnFeCoNi);0,_,. (j—1) TEM image (insert
pattern: IFFT image) (j), XRD pattern (indexed to LaCrO; (powder diffraction file PDF#75-0441)) (k), and elemental mapping (1) of

La(CrMnFeCoNi)Os,.,.

oxidized and to form other structure such as spinel structure
(Figures S15 and S16). XPS and Extended X-ray absorption fine
structure (EXAFS) data for different metal elements, especially
for the transition metal elements with multiple valences
including Fe, Co, and Ni, have also proved the successful
synthesis of HERSO (MgFeCoNiZn)O. The synthesized
HERSO (MgFeCoNiZn)O shows similar XPS peaks to FeO,
Co0, and NiO for Fe-2p, Co-2p, and Ni-2p, which indicates the
similar surface oxidation states of (MgFeCoNiZn)O for Fe, Co
and Ni to unary rocksalt structure (Figure 3d—f). Fourier-
transformed k*-weighted EXAFS data shows the M-O
coordination and M-M* coordination for Fe, Co, and Ni in
HERSO (MgFeCoNiZn)O, which is consistent with the unary
rocksalt oxide of FeO, CoO, and NiO (Figure 3g—i and Figure
S17). The difference in bonding length from the EXAFS data
can be consistent with the XRD result. The average ionic radius
of Mg, Fe, Co, Ni, and Zn in (MgFeCoNiZn)O (73.5 pm) is
lower than that of Fe** (78 pm) and Co®** (74.5 pm) and is
higher than Ni**, confirmed by the XRD data. Correspondingly,
the bonding length of Fe—0O, Fe-M*, Co—0, and Co-M* in
(MgFeCoNiZn)O is lower than that in unary FeO and CoO,
and the bonding length of Ni—O and Ni-M* in (MgFeCoNiZn)
O is lower than that in unary FeO (Figure 3g—i). In addition to
the synthesis of (MgFeCoNiZn)O, other rock salt oxides have
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been synthesized and studied by Joule-heating, demonstrating
the structural stability of different elemental combinations
(Figures S18 and S19).

The HEOs with other components and structures have been
synthesized successfully as long as the metallic activity of high-
entropy components is higher than nickel, which indicates the
universality of Joule-heating (Figure 4 and Figure S$20).
Therefore, rapid Joule-heating based on nickel foil provides a
potential synthesis approach for high-throughput synthesis of
HEO with various components and structures (Figure S21).
Besides (MgFeCoNiZn)O can be synthesized, HERSO
(MgMnCoNiZn)O can also be synthesized through Joule-
heating confirmed by the XRD pattern, elemental mapping, and
near-atomic level elemental mapping, in which Mn®* with higher
ionic radius (82 pm) can be introduced the rocksalt structure
(Figure 4a—c, Figures $22 and $23). In addition to the HERSO,
high-entropy spinel oxides (HESO) with two-component types
of AB,O, ((MgMnCoNiZn)Fe,0,) and A;0, ((CtMnFeCo-
Ni);0,.,) have been synthesized successfully via Joule-heating,
confirmed by XRD patterns, TEM images, and elemental
mappings at different scales (Figure 4d—i, Figure S24 and 25).
Additionally, high-entropy perovskite oxide HEPO (La-
(CrMnFeCoNi)O;,) has been also synthesized by Joule-
heating (Figure 4j—I, Figure S26). SEM with corresponding
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Figure 5. (a) LSV curves, (b) Tafel slope, and (c) TOF trends as a function of potential of the synthesized (MgFeCoNiZn)O, (MgMnCoNiZn), FeO,
Co0, and NiO. (d) OER stability test of (MgFeCoNiZn)O and commercial IrO,. (e) XRD pattern and (f) elemental mapping of (MgFeCoNiZn)O
after OER stability test. (g) Two-dimensional map of the calculated overpotentials based on AGxgoy-AGeg and AGso-AGsgoy at Fe site, Co site, and
Ni site for (MgFeCoNiZn)O, FeO, CoO, and NiO. (h) Partial 3d density of states for (MgFeCoNiZn)O, FeO, CoO, and NiO. (i) The comparison
diagram of the calculated overpotentials and experimental overpotentials for (MgFeCoNiZn)O, FeO, CoO, and NiO. (j) The pattern of the change of
overpotential with d-band center for (MgFeCoNiZn)O, FeO, CoO, and NiO.

EDS data also proves that all elements in the above-synthesized
HEOs basically conform to the stoichiometric ratio (Figures
$27—S30). In summary, Joule-heating based on nickel foil
provides a universal and rapid synthesis approach for various
HEOs and less-component oxides.

Transition metal compounds, especially the oxide including
the elements of Fe, Co, and Ni, have excellent OER activity
confirmed by previous reports.”** Therefore, the synthesized
HERSO and other rocksalt oxides as OER electrocatalysts are
tested and studied. The synthesized HERSO (MgFeCoNiZn)O
exhibits lower overpotential (300 mV cm™) and Tafel slope
(449 mV dec™") compared with unary oxide indicating the
positive synergistic effect of elements combination for OER
(Figure Sab and Figure S31). The synthesized HERSO
(MgMnFeCoNi)O that only has one different element from
(MgFeCoNiZn), shows low OER activity, which indicates the
important role of Fe in OER. In addition, the OER activity of
(MgFeCoNiZn)O is greatly higher than commercial IrO,
(Figure S32). In addition, TOFs at different potentials and
LSV with ECSA corrected show the better intrinsic OER activity
of (MgFeCoNiZn)O (Figure Sc, Figures S$33—S3S). The
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electrochemical impedance spectroscopy (EIS) data also prove
the lowest charge transfer resistance of (MgFeCoNiZn)O
compared with other samples (Figure $36). The excellent OER
activity of (MgFeCoNiZn)O comes from the elements of Fe,
Co, and Ni as active sites and the synergy and promotion of
overall metal elements (Figure S37). On the contrary, binary
rocksalt oxides (CoNi)O do not show the positive OER synergy
but show the average effect of CoO and NiO (Figure S38).
(MgFeCoNiZn)O shows good OER stability compared with
commercial IrO, and still remains the rocksalt structure with
single-phase and uniform elemental distribution after the OER
stability test (Figure Sd—f, Figure S39). In summary,
(MgFeCoNiZn)O exhibits excellent OER performance com-
pared with other samples, and multicomponents rocksalt oxides
as well as HEOs reported (Table SS, Table S7).

DFT simulation is used to analyze the OER intermediate
process for different unary rocksalt oxides as well as HERSO and
to prove the prediction above. The adsorption energies of
intermediates including *OH, *O, and *OOH, at Fe, Co, and Ni
active sites are calculated for (MgFeCoNiZn)O, FeO, CoO, and
NiO (Figures S40—S43, and Table S6). As shown in Figure Sg,
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the OER activity of the Fe site and Co site as highly active sites in
HERSO (MgFeCoNiZn)O increase, and the OER activity of the
Ni site as relatively low active in HERSO (MgFeCoNiZn)O
decreases so that the overall OER activity of (MgFeCoNiZn)O
increases compared to unary FeO, CoO, and NiO. The d-band
of electrocatalysts is closely related to the electrocatalytic
activity. As shown in Figure Sh, the DOS of the 3d-band shifts
toward the Fermi level from NiO to CoO to FeO, and the high
DOS near the Fermi level is conducive to the charge transfer of
electrocatalytic OER indicating the higher activity of Fe?*, which
is consistent with the experiment. Also, the d-band center of
FeO, CoO, and NiO exhibit a similar regular phenomenon
above that the d-band center of FeO, CoO, and NiO shift
positively from NiO to CoO to FeO. In particular, the d-band
center of Fe, Co in (MgFeCoNiZn)O shift positively compared
with unary FeO and CoO while the d-band center of Ni in
(MgFeCoNiZn)O shifts negatively compared with NiO.
According to the above prediction, the positive shift and
expansion of the d-band center may make the active sites move
toward the apex of the volcanic curve, indicating the increase of
OER activity in (MgFeCoNiZn)O. Moreover, there is a linear
trend that the increase of active site activity in (MgFeCoNiZn)
O is due to the decrease of AG:goy-AG+o and increase of
AG:5-AG:qy indicating the more continuity of intermediate
adsorption in HERSO (MgFeCoNiZn), which is consistent with
the analysis of DOS. The theoretical overpotentials based on the
RDS of DFT simulation for (MgFeCoNiZn)O, FeO, CoO, and
NiO exhibit a great linear relationship with the experimental
overpotentials based on the LSV with ECAS corrected,
indicating the unity of theory and experiments (Figure 5i).
Additionally, the d-band centers of different samples have a
relatively linear relationship with theoretical overpotentials that
the OER activities increase with the increase of the d-band
center in the rocksalt oxides system (Figure Sj). In summary,
relying on the DFT simulation, the relationship between
components and activity in HERSO can be established and
can be consistent with the experiments to a certain degree.

In this work, we develop a new synthesis approach of Joule-
heating based on nickel foil for the rapid synthesis of HEOs. This
technology of Joule-heating provides a very fast synthesis
process for only tens of seconds through the fast thermal
decomposition precursor inside nickel foil. The HERSO with a
new component combination (MgFeCoNiZn)O can be
synthesized rapidly through this technology of Joule-heating
and the regulation of precursor. Various characterizations prove
the successful synthesis of HERSO (MgFeCoNiZn)O, which
requires high temperature to overcome the effect of phase-
transition caused spinel phase through the promotion of entropy
at high temperature. The technology of Joule-heating also
exhibits the synthetic university for other HEOs including
HERSO ((MgMnCoNiZn)O), HESO (AB,O,
(MgMnCoNiZn)Fe,0,, and A;0, (CrMnFeCoNi);0,.),
HEPO (La(CrMnFeCoNi)O;_,). The synthesized HERSO
(MgFeCoNiZn)O shows great OER activity compared with
unary rocksalt oxides and commercial IrO,, due to the multiple
active sites and the synergy between different elements.
Moreover, the DFT simulation of (MgFeCoNiZn)O exhibits
more continuous DOS near the Fermi level and lower AG of
RDS compared with other samples indicating better OER
activity of (MgFeCoNiZn)O which is consistent with experi-
ments. In addition, there is a trend that OER activity increase
with the increase of the d-band center in this system. In general,
the technology of Joule-heating based on nickel foil demon-

strates high potential in the rapid and high-throughput synthesis
of HEOs and multiple-component oxides.
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