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A B S T R A C T   

Co-based compound is a kind of bifunctional electrocatalyst for the half reactions of water splitting. Here we 
report the catalytic performance of Co-Cl-C composited catalyst prepared by flash Joule heating system in oxygen 
evolution reaction (OER) and hydrogen evolution reaction (HER). It is found that Co-Cl-C composited film is an 
efficient electrocatalyst of OER and HER. In addition, the flash Joule heating is a fast, low energy consumption, 
and environmentally friendly preparation method. It opens up a new idea for the preparation method of com
posite materials.   

1. Introduction 

As we all know, energy is an important material basis for human 
survival and economic development. At present, fossil fuel is main en
ergy supply. However, their non-renewable nature and harm of envi
ronmental pollution have been a serious threat to the human living 
environment and economic development. Hydrogen is a clean and 
efficient energy carrier due to the advantages of high energy density, 
high combustion calorific value and clean combustion products, which 
provide an ideal energy alternative for human beings to fundamentally 
solve global problems such as energy and environment [1–6]. There are 
many methods of hydrogen production, including ammonia to 
hydrogen, methanol to hydrogen, coal and natural gas evaporation to 
hydrogen and water splitting to hydrogen, etc. Among them, electro
chemical water splitting has been much attention due to its simple 
preparation, low pollution and high efficiency [7]. Water splitting has 
two half reactions of oxygen evolution reaction (OER) and hydrogen 
evolution reaction (HER). However, the high theoretical value of 1.23 V 
in oxygen evolution reaction causes high potential above 1.8 V in water 
splitting process [8]. Generally, noble metal-base materials such as RuO2 
and IrO2 for OER [9] and Pt for HER [10] are used as catalysts in half 
reactions. However, the noble metal-based catalysts are scarce and 
expensive. To address this problem, ones attempt to make transitional 
family metal composites replace noble metal-based catalysts. 

Electrodeposition [11], hydrothermal synthesis [12] and a combi
nation of the two [13] are the main preparation methods of the noble- 
metal-free electrocatalysts. For the electrodeposition method, it is easy 
to operate. And it can regulate the grain size and improve the perfor
mance of the samples prepared. But there is a stress among the layers 
due to the difference between physical properties and growth modes of 
the various materials. Although the hydrothermal synthesis method is 
commonly used, the experiment has poor reproducibility. In our work, 
we prepared the Co-Cl-C composite powder using flash Joule heating 
system. The ink composited with powder is then dropped on the self- 
supported substrate to form the film. This preparation method is fast, 
low energy consumption and environmentally friendly. Tour et al have 
reported graphene was prepared using carbon-based precursor by flash 
Joule heating method [14]. Nevertheless, no one reported preparation 
of metal-based composites using flash Joule heating. The Co-Cl-C com
posite film has a high catalytic performance in oxygen and hydrogen 
evolution reaction. Our experiments provide new ideas for the design 
and preparation of composite materials. 

2. Experiment 

2.1. Materials 

Cobalt chloride hexahydrate (CoCl2⋅6H2O), ethanol, acetone and 
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were purchased from Sinopharm Chemical Reagent Co., Ltd. Carbon 
black was purchased from Cabot Corporation. Potassium hydroxide 
(KOH) was purchased from Aladdin Reagents, Inc. Nafion was pur
chased from Shanghai Hesen Electric Co., Ltd. These materials were not 
further treatment. Ni foam was purchased from Kunshan Guangjiayuan 
New Material Co., Ltd. The deionized water was used through an ultra- 
pure water system made in Beijing Puxi General Instrument Co., Ltd. 

2.2. Preparation of the CoCl2-C composited powder 

Briefly, 0.3 g carbon black (CB) and 0.9 g CoCl2⋅6H2O were mixed in 
ethanol under centrifugal stirring for 30 min. The above mixture was 
placed into a drying cabinet and dried at 60 ◦C for 12 h. Then, the dry 
powder was enclosed within a quartz tube and pressed between two 
copper electrodes, a schematic drawing as shown in Fig. 1 (a). Place the 
sample tube into the home-made flash Joule heating system illustrated 
in Fig. 1 (b). Co-Cl-C composited powders were prepared by flash Joule 
heating system with a voltage of 98 V and time of 20 s. In order to avoid 
oxidation of the sample, the vacuum dryer was replaced using high 
purity N2 before flash Joule heating. The specific operation steps are 
described as follows. First, the vacuum dryer is filled with high purity 
N2. Then, the vacuum dryer filled with high purity N2 is pumped to the 
limiting vacuum. Repeat this operation several times for reducing oxy
gen content. 

2.3. Electrochemical measurements 

All the electrochemical catalytic measurements were performed with 
a CHI 660E electrochemistry workstation (Chenhua, Shanghai) in a 
standard three-electrode cell system. 20 mg catalysts were dispersed in a 
mixture of 200 μl ethanol, 10 μl 5 wt% Nafion and 10 μl deionized water. 
After that, 70 μl catalyst ink was dropped onto a 1 cm × 2 cm Ni foam 
washed sequentially using ethanol, acetone and deionized water. The 
Co-Cl-C/Ni foam was used as the working electrode, the reference 
electrode and counter electrode are Hg/HgO and graphite respectively. 
In all measurements, the measured potentials vs. 0.931 V were cali
brated according to the reversible hydrogen electrode (RHE). 

2.4. Characterization 

The surface topography and element mapping of the powders were 
analysed using JSM-7800F scanning electron microscope (SEM). The 
test carrier is a silicon substrate. The microstructure, morphology and 
element mapping of the powders were characterized by JEM-2100 
transmission electron microscope (TEM). The elemental compositions 
were performed by Thermo Fisher ESCALAB250XI X-ray photoelectron 
spectroscopy (XPS). 

Fig. 1. (a) A schematic drawing of sample cell and (b) the reactor photo.  

Fig. 2. (a) XRD pattern, (b) SEM image and (c) energy spectrum Co-Cl-C composited powder, the insert is the distribution of the mean diameter.  
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3. Results and discussion 

3.1. Co-Cl-C composited powder prepared by flash Joule heating system 

XRD pattern of the powder sample with flash Joule heating is shown 
in Fig. 2 (a). It is well consistent with JCPDS#29-0466, which exem
plifies that anhydrous cobalt chloride of monoclinic crystal system is 
obtained after heating. SEM image and energy spectrum of the Co-Cl-C 
composited powder prepared by flash Joule heating system are shown in 
Fig. 2 (b, c). We can investigate that the particle size distribution of the 
powder is relatively uniform. The mean diameter of the composited 
powder is 33.20 nm, suggesting that flash Joule heating unifies the 
particles of the composited powder. For the energy spectrum, S peak is 
from the impurities in the conductive carbon black. The atomic ratio of 
Cl and Co decreases from 2 (CoCl2-C) to 1.34 (Co-Cl-C), which indicates 

certain atoms sublimate during the process of the flash Joule heating. 
We can also observe the air mass releasing from the sample cell (Fig. 1a) 
after heating. The air mass may be chlorine (See the support information 
for more details). Then the chlorine production reduces the chloride 
content of the cobalt dichloride. 

In order to investigate further the distribution of the elements, the 
TEM images, elemental mapping and HRTEM image of Co-Cl-C 
composited powder are shown in Fig. 3. Part of the cobalt atom aggre
gates, while chlorine and carbon distribute uniformly. From the HRTEM 
image, we observe that the cobalt-based compounds are coated by the 
crystalline carbons which act as a protection and isolation. In general, 
cobalt chloride and carbon black are mixed in heterogeneous. The above 
distribution mode cannot be achieved using the ordinary heating 
method. In our work, we apply a voltage at both ends of the quartz tube, 
the current is transmitted along the path with minimal resistance, 

Fig. 3. TEM images, elemental mapping and HRTEM image of CoCl2-C composited powder.  

Fig. 4. Schematic illustration of the synthesis.  

Fig. 5. (a) XPS survey spectrum of Co-Cl-C composite and (b) high-resolution Co2p XPS spectra.  
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providing the maximum heat to the conductive area, and the heat is 
released in the form of the black body radiation. The conduction path 
and the surrounding materials undergo significant annealing and 
graphitization during the flash Joule heating process. Due to the exis
tence of other impurities in carbon black and chlorine-containing 
component, the sublimation of heteroatoms provides more activity 
path for amorphous carbon atoms. Carbon atoms begin to nucleate, 
crystal, and grow, then cover on cobalt chloride. Schematic illustration 
of the synthesis is shown in Fig. 4. 

The surface composition of Co-Cl-C composited powder is observed 
in the XPS spectra. As shown in Fig. 5, the survey spectrum confirms the 
elements of chlorine, carbon, oxygen and cobalt. A typical Co2p XPS 

spectrum exhibits two peaks at 797.9 and 782.0 eV, which corresponds 
to Co2p1/2-3/2 doublets. And minor doublet shows the satellite peaks at 
803.7 and 787.1 eV. Such spectrum shape relates to Co(II) [15]. These 
results suggest that cobalt chloride exists as a compound in the powder. 
The cobalt-based compound has an excellent electrocatalytic activity 
toward OER and HER [16]. 

3.2. Co-Cl-C/Ni foam 

OER of Co-Cl-C/Ni foam (Co-Cl-C loading: 1.33 mg cm− 2) is evalu
ated using a three-electrode cell with a scan rate of 0.005 V s− 1 in 1.0 M 
KOH. A blank Ni foam and RuO2 on the Ni foam were also investigated 

Fig. 6. (a) LSV curves of CoCl2-C/Ni foam, RuO2 on the Ni foam and the blank Ni foam in 1.0 M KOH for OER, (b) Integrated OER performance chart providing a 
comparison with recent representative works, (c) Tafel plots of CoCl2-C/Ni foam and RuO2 on the Ni foam, (d) EIS plots, (e) LSV curves recorded for CoCl2-C/Ni foam 
before and after 1000 CV cycles, (f) Time-dependent current density curve for CoCl2-C/Ni foam under a static overpotential of 458 mV for 24 h. 
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for comparison purpose. Fig. 6 (a) shows linear sweep voltammetry 
(LSV) curves of the sample on the reversible hydrogen electrode (RHE) 
scale. To avoid the effect of ohmic resistance on the measured anodic 
currents, an iR correction must be applied to all initial data for further 
analysis. At a current density of 10 mA cm− 2, the blank Ni foam has an 
OER catalytic activity with a high overpotential of 484 mV, and RuO2 
shows an OER activity with a low overpotential of 226 mV. While the 
Co-Cl-C/Ni foam has the moderate OER activity with the overpotential 
of 339 mV at the same current density. As shown in Fig. 6 (b), this 
overpotential is superior to Co-containing catalysts [17–24] and some 
other noble-metal-free OER catalysts in alkaline solutions [25,26]. The 
Tafel plots are shown in Fig. 6 (c). The Tafel slope with linear fitting can 

reflect the catalytic kinetics for oxygen evolution. The Tafel slope value 
of Co-Cl-C/Ni foam (79 mV dec-1) is higher than that of RuO2 (65 mV 
dec-1), implying that Co-Cl-C/Ni foam has a slow OER kinetics compared 
with RuO2. Electrochemical impedance spectroscopy (EIS) measure
ments were then conducted at an operating voltage of 400 mV, and 
Nyquist curves are shown in Fig. 6 (d). Comparing the charge transfer 
resistance (Rct) values, the value of Co-Cl-C/Ni foam (2.063 Ω) is 
obviously smaller than that of Ni foam, indicating that the OER process 
of Co-Cl-C/Ni foam has fast electron transport and is weakly affected by 
mass transfer. Furthermore, we investigate the durability of Co-Cl-C/Ni 
foam by continuous cyclic voltammetry (CV) scanning between 1.4 and 
1.7 V vs. RHE with a scan rate of 0.1 V s− 1. Fig. 6 (e) shows the LSV 

Fig. 7. (a) LSV curves of Co-Cl-C/Ni foam, Pt/C on the Ni foam, and the blank Ni foam in 1.0 M KOH for HER, (b) Integrated HER performance chart providing a 
comparison with recent representative works, (c) Tafel plots of Co-Cl-C/Ni foam and Pt/C on the Ni foam, (d) EIS plots, (e) LSV curves recorded for Co-Cl-C/Ni foam 
before and after 1000 CV cycles, (f) Time-dependent current density curve for Co-Cl-C/Ni foam under a static overpotential of 173 mV for 24 h. 
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curves of the initial and 1000th CV scanning. At a current density of 10 
mA cm− 2, the overpotential decreases to 343 mV, indicating that the 
appropriate number of CV scanning could motivate the surface activa
tion and stabilize the catalytic properties of the catalyst. Moreover, the 
24 h chronoamperometric test of Co-Cl-C/Ni foam leads to 10.9% 
degradation in current density, as shown in Fig. 6 (f). The bubbles from 
oxygen evolution reaction make the catalyst fall off from Ni foam and 
weaken catalytic performance of the catalyst. These results indicate Co- 
Cl-C/Ni foam has an excellent OER catalytic activity and relatively good 
long-term stability in 1.0 M KOH. 

The HER performances of Co-Cl-C/Ni foam, Pt/C loaded on the Ni 
foam, and the blank Ni foam were also evaluated in the same electrolyte. 
Fig. 7 (a) shows the linear sweep voltammetry (LSV) curves. For the 
current density of 10 mA cm− 2, Pt/C has an outstanding activity and the 
blank Ni foam has a poor activity, while Co-Cl-C/Ni foam shows the 
moderate activity with an overpotential of 161 mV. As shown in Fig. 7 
(b), the overpotential is less than Co-containing catalysts [27–32,10,33] 
and some other noble-metal-free HER catalysts in same solution envi
ronment [34,35], suggesting that Co-Cl-C/Ni foam has a superior HER 
activity. Fig. 7 (c) shows the Tafel plots for Co-Cl-C/Ni foam and Pt/C. 
The Tafel slope of Co-Cl-C/Ni foam is lower than that of Pt/C, suggesting 
that Co-Cl-C/Ni foam has a fast HER kinetics compared with Pt/C. Fig. 7 
(d) shows Nyquist curves measured at an operating voltage of 300 mV. 
The value of Co-Cl-C/Ni foam (1.262 Ω) is still smaller than that of Ni 
foam, demonstrating that the HER process of Co-Cl-C/Ni foam has fast 
electron transport and is weakly affected by mass transfer. After 1000 
cycles by continuous CV scanning between 0 and − 0.5 V vs. RHE with a 
scan rate of 0.1 V s− 1, the LSV curves of the initial and 1000th CV 
scanning are shown in Fig. 7 (e). There is 13.6% degradation in current 
density for 24 h chronoamperometric test of CoCl2-C/Ni foam, as shown 
in Fig. 7 (f). These results indicate that Co-Cl-C/Ni foam is suitable for a 
catalyst of hydrogen evolution reaction. 

4. Conclusions 

Co-Cl-C composited powders were prepared by flash Joule heating 
system. The particles of the composited powder were refined and the 
cobalt-based compounds were coated in the crystal carbon after the flash 
Joule heating. This is a novel preparation method. Our work is the first 
report on the preparation of composited materials using this method, 
and the ink mixture with the prepared composited powders have ach
ieved a demonstrable effect in catalytic performance of OER and HER. 
The overpotential of OER and HER for Co-Cl-C composited film with 
good catalytic stability are 339 and 161 mV at the current density of 10 
mA cm− 2. Although the performance is not very high, the preparation 
method of the composited powders provides a new inspiration. Next, we 
will continue to work on preparing composites using flash Joule heating 
and constantly improve their performance and application of the cata
lyst under high current density. 
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