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Flash healing of laser-induced graphene

Le Cheng1,2, Chi Shun Yeung1,2, Libei Huang1,3, Ge Ye1, Jie Yan4, Wanpeng Li 4,
Chunki Yiu5, Fu-Rong Chen 4, Hanchen Shen6, Ben Zhong Tang 6,7,
Yang Ren 8,9, Xinge Yu 5 & Ruquan Ye 1,2

The advancement of laser-induced graphene (LIG) technology has streamlined
the fabrications of flexible graphene devices. However, the ultrafast kinetics
triggered by laser irradiation generates intrinsic amorphous characteristics,
leading to high resistivity and compromised performance in electronic devi-
ces. Healing graphene defects in specific patterns is technologically challen-
ging by conventional methods. Herein, we report the rapid rectification of
LIG’s topological defectsbyflash Joule heating inmilliseconds (referred to as F-
LIG), whilst preserving its overall structure and porosity. The F-LIG exhibits a
decreased ID/IG ratio from 0.84 – 0.33 and increased crystalline domain from
Raman analysis, coupled with a 5-fold surge in conductivity. Pair distribution
function and atomic-resolution imaging delineate a broader-range order of
F-LIG with a shorter C-C bond of 1.425 Å. The improved crystallinity and con-
ductivity of F-LIG with excellent flexibility enables its utilization in high-
performance soft electronics and low-voltage disinfections. Notably, our F-
LIG/polydimethylsiloxane strain sensor exhibits a gauge factor of 129.3 within
10% strain, which outperforms pristine LIG by 800%, showcasing significant
potential for human-machine interfaces.

Graphene is a widely renowned two-dimensional material for its
remarkable mechanical, electrical, and thermal properties1,2. This
atom-thin material, prepared by the mechanical exfoliation of natural
graphite using adhesive tape, was shown to have high electron mobi-
lity in ambient conditions in 20043. Since then, various preparation
techniques have been developed to facilitate its academic research
and industrial applications. The most commonly employed strategies
include chemical vapor deposition4,5, liquid-phase exfoliation of
graphite6,7, and reduction of graphene oxide8,9. These early production
methods, however, have notable limitations that hinder their use in
commercial and large-scale manufacturing, such as the requirement

for specialized equipment, the use of harsh oxidizing and reducing
agents, high energy consumption, and labor-intensive processes.

In 2014, a significant advancement in graphene synthesis was
achieved with the development of laser-induced graphene (LIG)10,11. It
is a bottom-up approach that directly converts carbonous precursors,
including natural and synthetic polymers12,13, and small molecules14,15,
into three-dimensional (3D) porous graphene through laser irradia-
tion. This technology enables the convenient and scalable production
of LIG using a commercial laser cutting machine in ambient atmo-
sphere, offering several advantages over conventional graphene, such
as high porosity, good flexibility, cost-effectiveness, and mask-free
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patterning. The versatility and adaptability of the LIG technique have
garnered considerable interest across multiple disciplines, such as
electronics16,17, catalysis18,19, and sterilization20. Since its discovery, a
wide range of laser sources including infrared (IR)10,21, visible22–24, and
ultraviolet (UV)25,26, have been employed for LIG fabrication. However,
it is important to note that these laser pulses have notably short
durations, ranging frommicroseconds to femtoseconds12,25,27–29, which
leads to ultrafast kinetics that predominantly yield amorphous struc-
tures in LIG. While this polycrystalline structure has advantages for
energy storage and electrocatalysis due to its rich electron states near
the Fermi level and abundant active sites for substrate binding10,14,18, it
can also result in poor electrical conductivity, thereby limiting its
performance in electronic devices such as electrical heaters and sen-
sors. Therefore, it is crucial to control the defect density and optimize
the crystal structure in LIG for tailored applications.

Current methods for healing defects in graphene materials typi-
cally involve bulk heating and chemical reduction. These approaches
have shown success in preparing graphene films, powders, and col-
loids, but are not directly applicable for healing defects in LIGpatterns.
For instance, high-quality reduced graphene oxide with high con-
ductivity is often obtained through furnace annealing at high tem-
peratures, ranging from several hundreds to thousands of degrees
Celsius, under inert or reductive atmospheres30,31. However, this pro-
cess can cause the carbonization of the entire material, leading to the
ablationof polymer substrates thus damage the LIGpatterns.Chemical
reductants such as hydrazine32, sodium borohydride33, and hydrohalic
acids34, are capable of reacting with oxygen-containing functional
groups like epoxy and carboxyl groups. However, chemical reduction
is incapable of inducing atom rearrangements to transform amor-
phous carbon rings into crystalline structures.

In this work, we demonstrate the effectiveness of flash Joule
heating (FJH) in healing defects present in LIG at the atomic level, while
preserving itsmacroscopic geometry andmicroscale 3D structure. FJH
involves the passage of high direct current (DC) pulses through con-
ductive materials, which enables rapid and intense resistive heating
and has found recent applications in the fabrication and processing of
carbonmaterials. For example, Hu’s group used FJH to covalently weld
carbon nanofibers and enhance graphitization, obtaining a highly
conductive carbon network35. Tour’s group employed FJH to achieve
the rapid and large-scale production of graphene from diverse feed-
stocks such as carbon black, coal, petroleum coke, waste foods, and
plastics36,37. By controlling the FJH process of carbon nanotubes,
hybrids with tunable carbon nanotube/graphene ratio could be
obtained38. These reports primarily focus on the production of carbon
allotropes and lack control over the patterning of the materials.
Compared with traditional furnace annealing, FJH offers distinct
advantages as it is fast and localized. The heating duration of FJH is
relatively short, typically lasting from tens of milliseconds to seconds.
However, it is essential to note that the electrical pulses used in FJH are
still significantly longer than the laser pulses employed in LIG fabri-
cation. The longer heating durations of FJH may facilitate the reorga-
nization of carbon atoms within LIG, leading to improved order.
Inspired by the pioneering works and based on the above analysis, we
believe that FJH holds promise for rectifying topological defects pre-
sent in LIGpatterns.Herein, by applying a brief high-powerDCpulse to
the pre-formed LIG conductive patterns, we achieve the facile and
straightforward fabrication of flexible and porous graphene patterns
with high crystallinity, referred to as flash Joule heated LIG (F-LIG).
Raman spectrometry, together with advanced atomic imaging tech-
niques and X-ray pair distribution functions, reveal the reduction of
defect density and the improvement of crystalline size in F-LIG. This
improvement in structural characteristics leads to a notable reduction
in resistivity by up to 80% compared to unmodified LIG, which opens
up opportunities for its utilization in high-performance electronic
devices. As a proof of concept, F-LIG is utilized as sensing components

in strain sensors, achieving a substantial improvement in sensitivity
and showcasing significant potential in various applications, such as
subtlemovement detection, information encryption and transmission,
and human-machine interfaces. Additionally, we also reveal an
enhanced bacterial killing property of F-LIG under low voltages, pre-
senting new possibilities for the development of antibacterial surfaces
using LIG in healthcare settings and public spaces.

Results and Discussion
F-LIG fabrication and FJH progress investigations
Thepreparation process for F-LIG is shown in the schematicdiagram in
Fig. 1a. This two-step procedure involves the scribing of original LIG
patterns onto a PI film under ambient conditions, followed by the FJH
process. In the FJH procedure, a high DC voltage is applied for an
ultrashort duration to the pre-formed LIG patterns within a vacuum
chamber. In order to ensure consistent heating area, LIG are patterned
into dumbbell shapes (Supplementary Fig. 1). This design allows the
FJH to occur primarily at the thinner middle section due to its higher
resistance. Silver paste is applied to thewider ends to establish reliable
electrical contact (Supplementary Fig. 2). First, different voltages with
a pulse duration of 20ms are applied to the LIG patterns with
dimensions of 1mm× 10mm, and the resultant sample is denoted as F-
LIG-FJH voltage. Figure 1b illustrates the observation of the dazzling
flash of black-body radiation emitted from the LIG patterns, confirm-
ing the successful execution of the FJH process. This characteristic
phenomenon signifies the instantaneous generation of heat resulting
from the flow of current. Different flash intensities corresponding to
the applied FJH voltages ranging from 150 – 190 V, demonstrate dif-
ferent temperatures reached. The LIG patterns emit an orange-red
glow at potentials of 150 and 160 V and the flash emission color turns
to white as the voltage rises to 180 and 190 V, which indicates the
production of significant thermal energy. As shown in Fig. 1c, the
temperatures achieved under each applied voltage (150-190V) are
measured to be around 1300, 1700, 2100, 2300, and 2500 °C,
respectively. The resistance of the LIG patterns was measured before
and after FJH treatment to investigate the impact of FJH on the elec-
trical properties of LIG. As presented in Fig. 1d, initially, the LIG pat-
terns exhibits an average resistance of around 590Ω. Upon subjecting
to the FJH treatment, a noticeable reduction in resistance is observed
and the resistance shows a clear decreasing trend with increasing FJH
voltages. Notably, the resistance of F-LIG-190 V decreases significantly
to approximately 120Ω, corresponding to a remarkable 5-fold increase
in conductivity.

To provide further insights into the relationship between the
applied voltage and the FJH process, instantaneous voltage (U) and
current (I) were recorded during the FJH procedure. Based on these
measurements, we derived the instantaneous areal power density (PA)
and areal energy density (EA) using the equations PA =UI=A and
EA =UI=A dt, respectively. Here A represents the area of the LIG pat-
terns, and t denotes the discharging time. As shown in Fig. 1e-g, the
voltage is programmedwith a switch-onduration of 20ms. Under each
applied voltage, the resulting current andpowerdensity exhibit similar
profiles. As the applied voltage increases, the integrated EA, i.e., the
generated Joule heat, as well as the temperature reached, show an
increasing trend (Fig. 1c). Specifically, under 150 and 160 V (corre-
sponding to an EA value of 10.5 and 13.4 J cm−2, respectively), the cur-
rent and power density are proportional and exhibit similar profile to
the voltage. As voltages increased to 170 V (EA ~ 17.6 J cm−2) or higher,
the current and power density curves initially follow a similar tread as
the voltage but then experience a sudden surge, indicating a notable
reduction in the resistance of the LIG patterns.When the FJH voltage is
190V, there appears a maximum improvement in electrical con-
ductivity. In this case,PA and corresponding EA reach ~2100Wcm−2 and
27.55 J cm−2, respectively, indicating rapid and significant energy input
and heat generation within the LIG patterns. Additionally, it is
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observed that the onset of current surge happens earlier with the FJH
voltage. These observations suggest the presence of a threshold for
the generated Joule heat or temperature to trigger the flash healing
effect. Below this threshold, corresponding to the cases of 150 and
160V, the LIG patterns can only be heated to moderate temperatures
(below 1700 °C), which is insufficient for the arrangement of carbon
atoms. On the other hand, excessively high voltage, for example,
200V, leads to excessive transient heating and gas release, resulting in
the breakdown of the LIG patterns (Supplementary Fig. 3).

Structural characterization of F-LIG
Raman spectroscopy was employed to examine the defect and layer
structure of the LIG and F-LIG samples. As depicted in Fig. 2a, the
Raman spectrum of original LIG exhibits prominent D band and G
band, which arise from the breathing mode of sp2 carbon atoms in
distorted lattice and the in-plane vibration of sp2 carbon atoms in
hexagonal lattice, respectively39,40. Moreover, a blunt 2D band is
observed, indicating the presence of multiple layers in LIG41. After FJH
treatment, the Raman spectra of F-LIG samples exhibit a significant
decrease in the D band with increasing applied voltage, which is indi-
cative of a reduction in density of defects, such as vacancies and dis-
order. To enablemore detailed quantitative analysis, the ID/IG ratiowas
calculated. This ratio serves as an indicator of the degree of defects
present in graphitic materials. Additionally, the ID/IG ratio can be used
to determine the crystalline size (La) along the a-axis through the

equation La = (2.4 × 10−10) × λl
4 × (IG/ID), where λl is the wavelength of

the Raman laser (532 nm)42. As shown in Fig. 2c, the ID/IG of original LIG
is 0.84, corresponding to an La of 22.9 nm. In comparison, F-LIG-190 V
displays a significantly reduced ID/IG of 0.33, and the corresponding La
reaches ~60 nm, which is ~2.6 times larger than that in LIG. These
results imply that the FJH treatment can considerably promote the
healing of structural defects in graphene, resulting in the growth and
enlargement of the crystalline domains. In addition to the decline of D
band, it can be observed that the 2D band exhibits noticeable shar-
pening and narrowing as the FJH voltage increased. Figure 2d presents
the full width at half maximum (FWHM) of the 2D band and the I2D/IG
ratio, whichare regarded tobe associatewith the structural quality and
layer count of graphene41,43. With the increase of applied voltage, the
FWHMof the 2D band dropped from 109.4 cm-1 for LIG to 63.8 cm-1 for
F-LIG-190V. Simultaneously, the I2D/IG increased from 0.73 – 1.05. The
narrower 2Dband FWHMandhigher I2D/IG ratio suggests the improved
quality and reduced stacks. One possible explanation for the reduced
stacking is that the instantaneous heat generated by FJH treatment
helps the expansion of graphene layers. A closer look reveals that the
2D peak in F-LIG samples exhibit blue shift with the increase of FJH
voltage, as depicted in the enlarged spectra in Fig. 2b. Amaximumshift
of ~27 cm-1 occurs when the applied voltage is 190 V. This shift may be
attributed to several possible factors, including changes in the gra-
phene layer count, induced strain in the lattice, and modifications in
the electronic band structure44,45.
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Fig. 1 | Fabrication of flash Joule heated laser-induced graphene (F-LIG) and
investigation of the flash Joule heating (FJH) progress. a Schematic diagram of
the F-LIG fabrication. b Digital photograph of LIG patterns (1mm× 10mm) during
the FJH process under different voltages with a pulse duration of 20ms. Scale bars
are 3mm. c Temperature reached and areal energy density during the FJH process.

d Resistance and the resistance reduction ratio (R/R0) of F-LIG samples compared
to original LIG. Error bars represent the standard deviation of three independent
measurements. e Voltage, (f) current, and (g) areal power density profiles during
the FJH process.
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The elements content and atomic binding state of LIG and F-LIG
were analyzedbyX-ray photoelectron spectroscopy (XPS).As shown in
the survey spectra (Fig. 2e), both LIG and F-LIG exhibits a prominent C
1 s peak at 284 eV, along with a weak O 1 s peak at 530 eV19. The initial
LIG possesses a high carbon content of 96.28% and relatively low
oxygen content (2.69%) and nitrogen content (1.03%). After the FJH
treatment, the carbon content increases further to 98.53%, while the
oxygen and nitrogen content are reduced to 0.78% and 0.69%,
respectively. Further analysis of the deconvoluted C 1 s spectrum
(Fig. 2f) reveals that the decrease in oxygen content is primarily
attributed to the reduction of C-O bonds. These results indicate that
the FJH treatment effectively removes oxygen- and nitrogen-
containing groups, which is beneficial for the preparation of gra-
phene material with higher purity and fewer defects.

According to the equation EA =UI=A dt, energy density of the FJH
process is also proportional to the discharging time. Thus, we con-
ducted additional investigations to assess the influence of pulse
durations on the FJH process. Constant voltage of 130 Vwas applied to
the LIG patterns (1mm× 10mm) for various durations (20, 30, 40, 50
and 60ms). As shown in Supplementary Fig. 4, when the pulse dura-
tion is 20 and 30ms, the current exhibits similar profiles with voltage.
Correspondingly, there isminimal change in resistance after treatment
(Supplementary Fig. 5). As the duration prolongs, an abrupt increase in
current is observed, indicating a decrease in resistance caused by the
high temperature-induceddefecthealing. At a pulse durationof 40ms,
the resistance exhibits a slight decrease from 600Ω to 530Ω. This
resistance is further reduced to 150Ω when the pulse duration
increases to 50ms. Besides, the D band intensity in the Raman spectra
also starts to decrease when the pulse duration is 40ms and becomes
significantly lower after the 50ms FJH treatment. However, further
extending heating time to 60ms leads to the breakage of the LIG layer,
as reflected by the sudden decrease in current. It should be noted that,
with the same voltage increments, shorter pulse durations result in
smaller increments in energy density, allowing for finer control over
the FJH process. Moreover, shorter heating time also minimizes heat
dissipation. Based on these considerations, the lower limit of the pulse

duration (20ms) achievable by the power supply is selected unless
otherwise specified.

In order to investigate the impact of FJH on the microstructure of
LIG, scanning electron microscopy (SEM) images were collected
(Supplementary Fig. 6). The original LIG sample demonstrates a foam-
like structure with discernible laser scribing paths in horizontal
direction. An enlarged view reveals the existence of fluffy fibrous
structures on the surface and sphericalmicropores beneath. This high-
porosity structure is generated due to the release of gaseous matter
during the laser manufacturing process. After the FJH treatment, the
sponge-like structureof LIG iswell-preserved. The 3Dporous networks
remain continuous, and the micropores aremaintained. As seen in the
enlarged images, with the increase in FJH voltage, the F-LIG samples
exhibit slightly larger micropore size compared to the original LIG.
This observation is likely due to the release of gases during the FJH
process.

Atomic-scale morphology study
The atomic-scale morphology of LIG before and after FJH treatment
was further examined using high-resolution transmission electron
microscopy (HRTEM). As shown in Fig. 3a, for the graphene sheets in
original LIG, a prominent characteristic is the disordered arrangement
of atoms, which includes a significant presence of pentagons-
heptagons pairs (Fig. 3b). This disorder is due to the amorphous nat-
ure induced by the rapid heating and cooling during laser irradiation in
themicrosecond timescale. In contract, graphene sheets in F-LIG-190V
exhibit awide range of highly orderedhexagonal carbon lattice (Fig. 3c
and d). This observation is consistent with the decreased defect con-
centrations and increased crystallinity revealed by the Raman analysis.
These findings further confirm the amorphous-to-crystalline transfor-
mation achieved by the FJH technique.

Pair distribution functions (PDFs) analysis was employed to gain
insight into the interatomic distance of LIG and F-LIG. As shown in
Fig. 3e, all the samples display the first two primary bands corre-
sponding to the nearest planar pair distances at around 1.4 Å and 2.5 Å,
consistentwith previous literature14,18. Fig. 3f presents anenlarged view
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of the range 1.1–1.9 Å to further explore the change of interatomic
distances. For LIG, the nearest-neighbor band is centered at 1.458 Å,
with a broad discrete range. After FJH treatment, this band becomes
noticeably narrower and shifts to shorter distance of 1.444 Å and
1.425 Å for F-LIG-170 V and F-LIG-190 V, respectively. The more con-
centrated distribution of nearest-neighbor bonds, along with the
reduction inbonddistances, suggests a structural transformation from
a five- and seven-membered ring predominant configuration to one
with a higher abundance of six-membered rings. This indicates an
enhancement in the hexagonal graphitic structure of the treated F-LIG
samples. Besides, the subsequent bands after the second nearest
neighbors also become more pronounced in F-LIG compared to LIG.
This observation suggests the presence of more long-range ordered
structures in F-LIG. Taken together, these above results provide com-
pelling evidence of the FJH-induced amorphous-to-crystalline struc-
tural transformation at the atomic scale and from a statistical
perspective.

Adaptability of FJH technique to LIG materials
There are earlier studies mentioning that multiple laser passes can
enhance the conductivity of LIG by promoting graphitization46–48.
Our investigation demonstrates that the reduction in D band
intensity and resistance is primarily observed after the second lasing
pass (Supplementary Fig. 7). Subsequent lasing cycles exhibit only
slight additional reduction in these properties. The resistance
reduction is also modest (from ~600Ω – ~350Ω, LIG dimension:
1 mm × 10mm). These results are consistent with previous literature
reports46. Furthermore, it is noticed that repeated lasing cycles leads
to the collapse of LIG (Supplementary Fig. 8). This damage will
destructively impact the structural integrity and practical applica-
tions. In comparison, it is worth noting that FJH treatment is capable
to achieve significant improvement in conductivity, and at the same
time, the LIG patterns retains their original appearance, displaying
no cracks or deformation (Supplementary Fig. 9). This is because FJH
treatment does not subject the material to prolonged exposure of
high temperatures or uneven heating, minimizing the potential of
structural damage. The retained structural integrity of the resultant
F-LIG samples ensures the stability and reliability for subsequent
applications and devices. Moreover, the adaptability of the FJH
treatment is demonstrated through the successful application on

LIG patterns with varying shapes and dimensions, as well as different
substrates including polyethersulfone (PES), poly(ether-ether-
ketone) (PEEK), and PES/lignin. The triggering of the FJH process is
evident from the observation of a bright flash. Subsequently, the
resulting F-LIG exhibit reduced resistance and improved Raman
signals (Supplementary Figs. 10−13). These expansions highlight the
significant implications and substantial potential of this technique in
a wider range of applications. Furthermore, we demonstrated that
the defect healing effect of the FJH technique can not only work with
the LIG patterns but also with LIG in powder form. To achieve this,
powdered LIG was scraped off and subjected to FJH in a quartz tube
(Supplementary Fig. 14). In this experimental setup, the FJH process
was triggered by applying DC voltages of 70 V, 100 V, and 130 V for
approximately 100ms. Similarly, an intense flash generated from
rapid heat accumulation is observed during the process (Supple-
mentary Fig. 15). Furthermore, compared with the LIG patterns, the
Raman spectra of powder sample show a similar trend of variation
(Supplementary Fig. 16). As the applied voltage increases, the ID/IG
decreases from0.84 –0.27, and the La increases from 23.0 – 71.9 nm.
The identical change degree in these parameters between the pat-
terned and powdered LIG suggests that both samples undergo a
comparable level of defect healing. Additionally, X-ray powder dif-
fraction (XRD) patterns were collected to reveal the revolution in
crystallinity in F-LIG (Supplementary Fig. 17). Across all the samples,
the characteristic peak centered at 2θ ≈ 26°, assigned to the (002)
facet of graphene, is observed. The initial LIG exhibits a broad peak
locates precisely at 2θ = 25.9°, corresponding to an interlayer spa-
cing (Ic) of ~3.47 Å. After FJH treatment, this characteristic peak
gradually increases in intensity and shifts to 2θ = 26.4°, corre-
sponding to a reduced interlayer spacing of 3.41 Å. These two Ic
values are consistent with the reported literature values for LIG and
flash graphene10,36. These observations point to the transformation
of LIG from an amorphous to a crystalline phase, accompanied by a
reduction in the interlayer spacing between the graphene sheets.
This reduction could be attributed to the elimination of functional
groups or impurities between adjacent layers. Given the comparable
level of defect healing observed in both the powered and patterned
LIG samples, it can be inferred that the XRD analysis based on the
powder sample holds true to some extent for the patterned sample
as well.
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Fig. 3 | Investigation of topological structure at atomic level. High-resolution
transmission electron microscopy (HRTEM) images of (a) LIG and (c) F-LIG-190 V.
Scalebars are 5 nm.b and (d) are the enlarged viewof the selected area in (a) and (c)

respectively. The atomic ring structures are highlighted. Scale bars are 0.5 nm.
e Pair distribution functions (PDFs) of LIG and F-LIG samples treated under dif-
ferent voltages. f is the enlarged view of the region in (e) from 1.1 – 1.9 Å.
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Application of F-LIG as strain sensors
By virtue of the significantly improved conductivity andwell-preserved
3D porous architectures in F-LIG, its application as high-performance
piezoresistive strain sensorswere demonstrated. For the fabricationof
the devices, LIG and F-LIG patterns measuring 1mm×20mm were
utilized. Initially, the resistance of the LIG pattern is measured to be
~1300Ω. To trigger the FJH process in these samples, higher FJH vol-
tages are needed. Specifically, FJH voltages are set at 430V and 410V,
respectively, resulting in F-LIG with a high degree of defect healing
(referred to as F-LIG-H) and a moderate degree of defect healing
(referred to as F-LIG-M). The resistance of F-LIG-H and F-LIG-M is
determined to be ~270Ω and ~850Ω, respectively. Here, the voltage
and current curves, as well as the power and energy density, are also
recorded and calculated for reference (Supplementary Fig. 18). Due to
the limits in the rising speed of our power supply, the actual voltage
cannot reach the set value for voltages exceeding 200V. When the
voltage is set at 430 V, the actual voltage maxes out at 380V. The
resulting PA andQA reaches ~1900Wcm-2 and 25.72 J cm-2, respectively.
These values are comparable to those obtained from the 1mm× 10
mm patterns treated under 190 V. At 410 V (actual voltage ~370V), the
PA and QA reaches ~900Wcm-2 and 14.21 J cm-2, respectively, which is
lower than the optimal case. Consequently, the resistance decrease is
moderate under this condition. The as-prepared LIG and F-LIGpatterns
were then directly used as strain sensors to detect bending

deformation because of the inherent flexibility of PI substrate. Differ-
ent bending angles (25°, 42°, 53°, 64°, and 90°) were achieved by
adjusting the distance between the clamps (Supplementary Fig. 19).
The relative resistance variation (ΔR/R0, ΔR and R0 stands for the
resistance variation and the initial resistance value, respectively) was
recorded, where the applied voltage was maintained constantly at 1 V.
As shown in Fig. 4a, during the cyclic bending deformation, the sam-
ples consistently displaydistinct and replicable resistance response. As
the bending angle increased, the resistance exhibits a continuous and
gradual ascent. This behavior can be attributed to the decreased
contact between adjacent graphene sheets and thus reduced con-
ductive pathways, caused by the bending leaded in-plane strain.
Compared to LIG, F-LIGs exhibit more pronounced change in resis-
tance under the same bending angle. For example, at the bending
angle of 90°, F-LIG-H and F-LIG-M reach a ΔR/R0 value of 21.37% and
8.82%, respectively, which is 11.2-fold and 4.6-fold as large as that of
original LIG (1.91%) (Fig. 4b).

For strain sensors, stretchability is a crucial property to meet the
requirements of diverse application scenarios. Consequently, we pro-
ceeded to transfer the LIG and F-LIG-H patterns onto poly-
dimethylsiloxane (PDMS) substrate to fabricate stretchable strain
sensors. The strain sensing performance was evaluated under various
strain loads. As depicted in Fig. 4c and Supplementary Fig. 20, similar
to the bending sensors, both LIG/PDMS and F-LIG-H/PDMS exhibit an
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Fig. 4 | Performance of LIG- and F-LIG-based strain sensors. a Relative resistance
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increasing trend in resistance with applied strain. As the deformation
increases, there is a decrease in the contact between graphene sheets,
and in some cases, the strain can even cause the graphene cell walls to
rupture. These reduced contact and structural damage lead to hin-
drances in conductivity, resulting in an increase in resistance. Given
the same mechanism, there are distinct differences in the resistance
variation degree between LIG/PDMS and F-LIG-H/PDMS under the
same strain levels. At the strain of 10%, the F-LIG-H/PDMS sensor
demonstrates a prominent ΔR/R0 value exceeding 1180%, whereas the
LIG/PDMS only reaches a ΔR/R0 value of 163%, indicating that the
former exhibits significantly higher sensitivity to strain. In Fig. 4d, the
resistance variation with applied strain of LIG/PDMS and F-LIG-H/
PDMS are plotted to determine the gauge factor (GF), which is defined
as the first derivative of ΔR/R0 with respect to strain. As shown in
Fig. 4d, theGFof LIG- and F-LIG-based strain sensors aredetermined to
be 16.4 and 129.3, respectively. The substantial improvement in sen-
sitivity observed in the F-LIG/PDMS strain sensor can be attributed to
the improved conductivity and well-preserved 3D porous archi-
tectures of graphene scaffolds. These characteristics facilitate more
efficient electron transport, thus resulting in more pronounced chan-
ges in resistance under deformation. Besides, the enlarged pore size of
F-LIG, as depicted in the SEM images, may also contribute to the
enhanced sensitivity, because larger pore sizes can amplify the dis-
connection under strain, enabling more significant resistant changes.
Similar finding has been reported in the literature for graphene-based
material49. The performance of our F-LIG-based strain sensor along
with recently reported piezoresistive strain sensors are compared in
Supplementary Table 1, with a specific focus on low strain ranges. Our
sensor exhibits relatively high GF among state-of-the-art LIG-based
sensors and outperforms many metal- and other low-dimensional
nanomaterials-based sensors, highlighting its competence in detecting
subtle deformations with high accuracy.

To assess the reliability and stability of the strain sensors, first we
compare the resistance variation with strain during the stretching and
releasing process (Supplementary Fig. 21). It can be observed that
these two paths closely align with each other. This result indicates that
the sensors exhibit negligible hysteresis, which can greatly minimize
the inconsistencies and errors in the measurement. Additionally, tests
were conducted at various tensile speeds ranging from 5 –

35mmmin−1. As shown in Fig. 4f, the sensing signals exhibit consistent
amplitudes that are independent of the deformation frequency. This
observation indicates that the strain sensors can maintain their per-
formance and sensitivity across different tensile speeds, ensuring
reliable and accurate measurements. Furthermore, the durability of
the strain sensors is demonstrated through long-time cyclic tensile
test. As depicted in Fig. 4e, the resistance variation across 2000 tensile
cycles and 13000 s remains stable. This result supports the sensors’
resilience and robustness, demonstrating their suitability for practical
applications where they can withstand frequent and extended use
without noticeable degrading performance.

The high sensitivity of the stretchable sensors, particularly in the
small strain ranges, enables their successful application in monitoring
subtle human body motions, recognizing phonation, information
encryption and communication, and human-machine interfaces. In
Fig. 5a and b, we demonstrate the monitoring of various human
motions, including eye blinking, mouth opening and closing. The
sensor accurately captures and tracks these movements, showcasing
its capability for precise motion detection. Additionally, the high
sensitivity allows the sensor to detect even more subtle movements,
such as sounds vibrations and wrist pulse. The F-LIG-H/PDMS strain
sensor proves effective in detecting sound vibrationswhen attached to
the microphone of a smartphone. Figure 5c presents distinct and
highly repeatable resistance variation signals induced by different
sound vibrations, including “good”, “hello”, “graphene”, and “sensi-
tivity”. Figure 5d illustrates the recorded resistance vibration of the F-

LIG-H/PDMS strain sensor, which precisely matches the subject’s wrist
pulse. Remarkably, the sensor is capable of distinguishing the pulse
signal vibrations associated with the percussion wave (P-wave) and
diastolic wave (D-wave), as depicted in Fig. 5e. These results highlight
the versatile applications of the F-LIG-H/PDMS strain sensor, demon-
strating its great potential in various fields such as healthcare and
audio sensing.

In the application of wearable human-machine interfaces, the LIG
and F-LIG-H were mounted on the finger positions of a rubber glove,
respectively, forming smart gloves. Each sensor was wired to a testing
circuit to realize themotion recognition of human fingers and the real-
timecontrol of robotic hand. Figure 5f shows the schematic diagramof
the testing circuit. The signal acquisition part primarily involves a
voltage divider circuit, comprising five pairs of LIG or F-LIG-H sensor
(Rs) and the corresponding constant resistor (Rc). As the sensors are
bent and straightened, the resulting resistance variation can be con-
verted into the output voltage signals (Vout), which are the voltages
across the Rc and can be calculated through the equation
Vout =Vsource ×

Rc
ðRc +RsÞ. The Vout signals are then sent to an Arduino

board for the control of the robotic hand. To ensure a fair comparison
of sensitivity between the LIG and F-LIG-H gloves, parameters in the
control module were kept consistent throughout the experiments.
However, due to the differing initial resistances of LIG and F-LIG-H,
different Rc were employed to minimize the impact of the sensitivity
drifting in the testing circuit. Specifically, constant resistors of 11.5 kΩ
and 5.5 kΩ were paired with each LIG and F-LIG sensors, respectively.
This arrangement ensures that the Vout can attain the same value when
theLIGor F-LIGsensors are in their initial resistance state, i.e., when the
fingers are straightened. Photos illustrating the response of robotic
hand controlled by the F-LIG-H and LIG smart gloves are shown in
Supplementary Fig. 22. In both tests, the user performs the same hand
motion by bending one finger. It can be found that the F-LIG-H glove
can accurately control the robotic fingers to mimic the user’s finger
bending and quickly reach the complete bending status. However,
there is very little bending visible when the robotic hand is controlled
by LIG sensors (refer to Supplementary Movie 1). This observation
visually demonstrates the higher sensitivity of F-LIG-based sensors
compared to LIG-based ones. Thus, real-time control of the robotic
hand to perform various hand gestures, including “yeah”, “six”, “fist”,
and “okay” can be successfully realized by the F-LIG-H smart sensing
glove (Fig. 5g-j and Supplementary Movie 2). The quick and accurate
response of the robotic hand demonstrates the high feasibility of F-LIG
strain sensors in hand gesture recognition and human-machine inter-
action. Besides, the precise and real-time control offered by the smart
glove makes it possible to define the duration and frequency of
bending signals to transmit Morse code. As illustrated in Fig. 5k and l,
by manipulating the endurance and frequency of finger bending,
words such as “SOS” and “HELP” can be demonstrated, enabling
information encryption and communication.

Application of F-LIG in low-voltage sterilization
In addition to strain sensors, we also explored the potential of F-LIG in
low-voltage sterilization. In this section, square LIG films with dimen-
sions of 10mm× 10mm were utilized. Through the FJH treatment, a
notable decrease in resistance is observed from the initial value of
~250Ω to 70Ω (Supplementary Fig. 11). To quantitatively assess the
antibacterial performance, a colony-forming unit (CFU) assay was
conducted using Escherichia coli (E. coli) as model bacterium. Initially,
there is a similar adherence and survival of E. coli on both LIG and F-
LIG,with a count of ~8.5 × 104 CFUmL-1. Upon the application of lowDC
voltages, significant sterilization is observed (Supplementary
Fig. 23 and 24). Notably, F-LIG exhibits a higher bacterial killing rate
compared to LIG at each applied voltage. For instance, at 5 V, LIG
shows a moderate bactericidal activity of 76.3%, while F-LIG achieves
an excellent efficiency of 99.94%. Remarkably, the viable count of E.
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coli remains 2.09 × 104 CFUmL-1 on LIG, whereas significantly reduced
to only ~53 CFUmL-1 on F-LIG. During the process of electric steriliza-
tion, the significantly enhanced conductivity of F-LIG leads to a rela-
tively higher current density compared to LIG under the same applied
voltage (Supplementary Fig. 25). Consequently, F-LIG films are capable
of achieving higher surface temperatures (Supplementary Fig. 26).
However, it is worth noting that the surface temperature remains
moderate, with the F-LIG film reaching only 57 °C under 5 V. It has been
reported that atmoderate temperatures and shortdurations, electrical
current is the primary factor responsible for bacterial killing, with the
amount of bacterial eradication dependent on the current density50.
The mechanism of electrical sterilization is believed to involve the
electroporation of bacteria and direct electron transfer between the
bacteria and LIG.

In summary,wemanaged to couple the LIGwith the FJH technique
to fabricate flexible graphene patterns with reduced defect density
and improved conductivity. The improvements in atom arrangement
and structure were confirmed by various characterizations, such as
Raman spectroscopy, XRD, PDFs, and HRTEM. The enhanced con-
ductivity andwell-preserved 3D scaffolds allow for the development of
strain sensors based on F-LIG, which exhibited an 8-fold increase in
sensitivity (GF ≈ 129) compared to the original LIG-based sensors
(GF≈ 16). Applications in the sensitive detection of subtle human
motions, phonation recognition, information encryption and com-
munication, as well as human-machine interfaces are successfully
achieved. Furthermore, applicationof F-LIG in low-voltage sterilization
is also demonstrated. In summary, the combination of LIG with FJH
offers a straightforward, efficient, and versatile solution to address the

Fig. 5 | Application demonstration of F-LIG-based strain sensors. Real-time
resistance response of the F-LIG-H/PDMS sensor for the detection of (a) eye
blinking, (b)mouthopening, (c)microphonephonation, and (d) wrist pulses. Insets
are the photographs of the sensor attached to different parts of the subject’s body.
e Enlarged view of the shaded area in (d) demonstrating the distinguishable P-wave

and D-wave. f Schematic diagram of the testing circuit of robotic hand controlling.
g–j Digital photographs illustrating the control of a robotic hand to make various
gestures by the F-LIG-H sensors-integrated smart glove.k InternationalMorse code.
l Morse code for “SOS” and “HELP” produced by finger bending.
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inherent structural defects in LIG. This approach holds significant
promise for advancing high-performance graphene-based electronics
across various fields and could inspire more promising applications
such as supercapacitors and chemical sensors.

Methods
Fabrication of LIG and F-LIG
PI film with a thickness of 250 μm (Zeman Tape Material Technology,
China)was directly subjected to laser irradiation on a CO2 laser cutting
platform (Minsheng Laser #MSDB-FM60CO2 LaserMarker, 60W)with
a 10.6μm wavelength in ambient condition to fabricate LIG patterns.
The laser was operated in vectormode and the power, frequency, duty
cycle ratio, scan speed, pulses/dot, and line space were set as 4.8W,
10 kHz, 8%, 1000mm/s, 5 and 30μm, respectively. For other sub-
strates, PEEK film with thickness of 250 μm was provided by Mei-
deyuan Plastic Products Co., LTD, China. The PES and PES/lignin films
were fabricated using solution casting method. In a typical procedure,
1.2 g of PES commercial polymer powders were dissolved in 10mL
dimethylformamide (DMF). The resulting homogenous solution was
poured into an aluminumdish (inner diameter 6 cm) and kept at 80 °C
overnight to obtain PES films. To prepare PES/lignin film, an additional
0.8 g of lignin was added to the PES solution, and the casting was
carried out in the same manner. The FJH process was conducted in a
vacuum chamber, by applying DC voltages to the LIG patterns using a
programmable switching power supply (ITECH IT6500C). Dumbbell
shaped LIG patterns with an effective region of 1mm× 10mm and
1mm× 20mm were employed for the crystalline structure investiga-
tion and strain sensor fabrication, respectively. Temperatures reached
during the FJH process were measured using an IR thermometer
(Micro-Epsilon), which determined the temperature by fitting the
emitted black-body radiation.

Characterizations
The resistance of LIG patterns before and after FJH were measured by
two-point probe method using a UNI-T UT39C+ multimeter. Mea-
surement of several equivalent samples were done to obtain an aver-
age. Raman spectroscopy was performed on a WITec RAMAN alpha
300R system and the excitation wavelength was 532 nm. The micro-
structure of the LIG and F-LIG samples were examined by a QUATTRO
S SEM with an operating voltage of 15 kV. Morphologies at the atom
scale were evaluated by HRTEM images were acquired on a Cs-
corrected S/TEM JEOL ARM 300F2 with an acceleration voltage of
80 kV. XPS spectra were acquired using a Thermo ESCALAB 250Xi
spectrometer. XRD patterns were collected by a powder Rigaku X-Ray
diffractometer with Cu Ka radiation (λ = 1.54 Å).

The PDFs were extracted from high energy synchrotron X-ray
total scattering by direct Fourier transform of a reduced structure
function (F(Q), up to Q ≈ 24.7 Å-1) using the 11-ID-C beamline at the
Advanced Photon Source (APS) of Argonne National Laboratory (X-
ray wavelength 0.1173 Å). For each sample, the powder was loaded
into a capillary about 2mm in diameter. The measurement of each
sample was repeated three times, with a total data acquisition time
of 9min. The background scattering from the empty capillary was
also extracted during measurements. For data processing, the two-
dimensional diffraction images collected were first converted to
one-dimensional scattering profiles by GSAS-II. Then, PDFgetX3 was
used for the background subtraction and the normalization of the
atomic form factors in reducing I(q) to the structure function S(q).
Finally, S(q) was Fourier transformed to G(r), a pair distribution
function in real space.

Strain sensor fabrication
The as-prepared LIG and F-LIG (1 mm× 20mm) with PI substrates
were directly utilized as bending sensors by connecting copper
wires to both ends of the patterns using silver paste. For the

fabrication of stretchable strain sensors, LIG and F-LIG patterns need
to be transferred onto an elastic PDMS substrate to overcome the
inextensibility nature of PI. The PDMS prepolymer and curing agent
(Sylgard 184, Sigma-Aldrich) were thoroughly mixed by a weight
ratio of 10:1. After degassing, the mixture was casted onto the sur-
face of PI with LIG or F-LIG patterns. The coated PI film was then
cured at 80 °C for 2 h to allow the PDMS to solidify. After curing, the
PI film was carefully peeled off, leaving behind the LIG/PDMS or F-
LIG/PDMS composites. Then silver paste and copper wires were
applied to the connecting pads in the same manner as the bending
sensor. The transferred conductive patterns were then enclosed in
another layer of PDMS and cured, exposing the copper wires for
electrical connection.

Electromechanical test
The bending and tensile test was conducted using an Instron Series
3382 UTM System. In the case of bending sensing, LIG and F-LIG on PI
substrates were adhered to another strip of PI film with a size of
1 cm× 12 cm. The bending region was kept at 1 cm× 8 cm after
clamping. The specimen was bent by moving the crosshead toward
each other, at a speed of 200mmmin-1. When it comes to the tensile
test, strain was applied longitudinally, and the crosshead’s moving
speed was set at 10mmmin-1 throughout the test unless otherwise
stated. During the dynamic bending or stretching, real-time measure-
ments of the sensors’ resistance signals were made using a Keithley
2612B source meter.

Human motion detection, phonation recognizing and robotic
hand control
To detect humanmotions and sound vibrations, the prepared F-LIG-
H/PDMS strain sensors were attached to different parts of a subject’s
body, such as the wrist and face, or positioned on themicrophone of
a cell phone. The resistance signals generated during the move-
ments were captured by a Keithley 2612B source meter. For the real-
time control of robotic hand, five LIG or F-LIG-H bending sensors
were mounted to the knuckle positions of a rubber glove. The sen-
sors were then wired to a control circuit, which processes the signals
from the sensors and sends the control signals to the robotic hand,
so that it can mimic and replicate the movements of the wearer’s
hand in real-time.

Low-voltage sterilization experiments
A single colony of E. coli on a solid nutrient agar (Oxoid, CM0003)
plate was transferred to 5mL of nutrient broth (Oxoid, CM0001)
medium in a shaking incubator (170 rpm) at 37 °C overnight. The LIG
and F-LIG films with dimensions of 10mm× 10mm were randomly
divided into control groups and experimental groups and each group
had at least three films. First, the films were immersed into the E. coli
suspension (108 CFUmL-1) and incubated at 37 °C for 1 h. Next, thefilms
were removed from the suspension andwashedwith ringer solution to
remove unattached bacteria. Then, variable DC voltages (1 V, 3 V, and
5 V) were applied to the films for 2min by a Keithley 2612B source
meter. After that, the films were sonicated in 10mL ringer solution for
5min (10% power) to detach the bacteria. Bacteria CFU were enum-
erated using the plate counting method.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request. Source data are provided with
this paper and canbe accessed at https://doi.org/10.6084/m9.figshare.
25466926. Source data are provided with this paper.
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