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A B S T R A C T   

The growing environmental concerns have driven catalytic CO2 valorization as a forward-looking solution to 
mitigate the carbon footprint of valuable chemical products. CO2 conversion processes into synthesis gas, such as 
CO2 reforming of methane (CRM) or reverse water–gas shift (RWGS), may have a strategic role for the future 
sustainable production of chemicals and energy carriers. However, fuel combustion to supply the heat of the 
associated endothermic reactions would result in unwanted CO2 emissions, frustrating the overall objective. 
Electrification of the endothermic processes may represent the technological solution to such an issue. Here we 
report a promising approach for the direct electrification of the CO2 reforming of methane (eCRM) and reverse 
water–gas shift (eRWGS) processes in washcoated structured reactors. We employ catalytically activated open- 
cell foams that provide optimal heat and mass transfer properties and serve as Joule heating substrates for the 
catalytic conversion of CO2 via reaction with methane or hydrogen. The proposed reactor system with Joule- 
heated Rh/Al2O3-coated foam exhibited excellent catalytic and electrical stability for more than 75 h, oper
ating up to 800 ◦C and approaching equilibrium conversion at high space velocity, i.e., GHSV of 600 and 100 
kNl/kgcat/h for eRWGS and eCRM, respectively. Such a reactor concept has potential to ensure remarkably low 
specific energy demand for CO2 valorization. Assuming an optimized process configuration approx. 0.7 kWh/ 
Nm3

CO2 is calculated for eRWGS. By replacing fuel combustion with Joule heating driven by renewable electricity, 
the electrified CO2 valorization processes provide an important approach for dealing with the intermittent nature 
of renewable sources by storing the energy in chemicals with a low carbon footprint.   

1. Introduction 

To meet the demand of a growing global population, unprecedented 
amounts of fossil fuels are used as a source of energy and feedstocks to 
produce necessary chemicals, releasing significant amounts of green
house gas and other pollutants. It is estimated that the energy con
sumption by the chemical industry reached 43 EJ/y in 2015, together 
with roughly 3.3 Gt CO2eq emissions released to the environment, which 
however shows a constantly increasing trend [1]. As a result of the 
growing environmental concerns, CO2 valorization has been proposed as 
a promising path to mitigate the carbon footprint of valuable chemical 
products (e-fuels, e-polymers, e-chemicals). In this context, the CO2 
reforming of methane (CRM, Eq. (1)) and the reverse water–gas shift 
(RWGS, Eq. (2)) reactions are interesting options for syngas production 
from captured CO2 [2–4]. 

CRM : CO2 + CH4 ⇌2CO+ 2H2 ΔHo
r = 247 kJ/mol (1)  

RWGS : CO2 +H2⇌CO+H2O ΔHo
r = 41 kJ/mol (2) 

However, the endothermic nature of both reactions indicates that 
thermal energy is required to sustain them, which must be provided at 
high temperature to allow optimal process performances. In industrial- 
scale applications, the heat of reaction is typically supplied by fuel 
combustion: for CO2 valorization processes this is paradoxical, nega
tively affecting the overall CO2 balance. It is estimated that about half of 
the CO2 emissions in the chemical industry are related to fuel combus
tion for heat supply [5]. 

To effectively mitigate the carbon footprint of CO2 conversion 
routes, the primary energy source needs to be changed [6,7]. The elec
trification of catalytic processes is a promising concept that offers great 
potential to utilize excess renewable energy and mitigate CO2 emissions 
[8–11]. 

In the context of CO2 valorization processes, electrochemical 
reduction of CO2 (CO2R) enables the direct utilization of electric energy 
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into CO2 conversion, however, it is important to note that the solid oxide 
electrolyzer, i.e. the only technology approaching commercialization 
with over one year durability demonstrated [12], is characterized by an 
overall specific energy demand of 6–8 kWh/Nm3

CO2 [13]. On the other 
hand, power-to-heat approaches, such as induction heating, microwave 
heating and Joule heating, enable direct thermal energy supply without 
changing the reaction mechanism [14–16]. In principle, an intrinsically 
higher thermal efficiency (theoretically 100% [17]) can be expected 
from Joule heating as it is the only one that enables the direct trans
formation of electricity into thermal energy. Moreover, Joule heating is 
also characterized by fast dynamics and it has been proven that heat can 
be delivered at significantly high temperatures [18–20]. Process envi
ronmental and economic calculations suggest that Joule-heated CO2 
utilization processes based on renewable electricity are promising to 
reduce the carbon footprint of chemical products in the near future 
[21,22]. 

From the reactor engineering standpoint, one key issue is how to 
implement Joule heating in the design of electrified catalytic reactor. It 
is possible to directly heat up conductive catalyst pellets by Joule effect 
[23,24], however it is practically difficult to control the size of the 
contact area between pellets to enable electrical continuity [25]. On the 
other hand, the Joule heating concept is well applicable to structured 
catalysts, whose continuous solid matrix can ensure electrical continu
ity. For example, it is feasible to adopt catalytically activated commer
cial heating resistances with different shapes located inside the reactor 
[26–28], or integrate the electrical resistances (heating wires) within the 
channels or the framework of ceramic honeycomb monolith catalysts 
[29,30]. Joule heating can also be directly applied to the reactor tube, 
washcoated with catalyst on the inner wall [8,31]. Such configurations 
ensure excellent heat transfer, since the heat source is directly in contact 
with the catalyst; however, they are associated with significant external 
mass transfer limitations [32]. As an alternative solution, Joule-heated 
open-cell foams, characterized by high specific surface areas and 
excellent transport properties, have potential to overcome heat and mass 
transfer limitations in the electrified reactors [33–37]. 

These considerations motivated us to explore the electrified CO2 
reforming of methane (eCRM) and the electrified reverse water–gas shift 
(eRWGS) reactions by direct Joule heating of catalytically-activated 
open-cell SiC foams. In the present work, the Joule heating perfor
mance, catalytic performance, energy performance and CO2 valorization 
performance of the electrified reactor were assessed for the eCRM and 
eRWGS processes. 

2. Materials and methods 

As in previous works from our group [33,37], the adopted SiSiC foam 
(dfoam = 3.2 cm, Erbicol, CH) has a cell diameter (dcell) of 3.32 mm and a 
strut diameter (dstrut) of 0.61 mm, a total porosity estimated by ethanol 
picnometry of 0.88, and a surface to volume ratio evaluated on the bare 
geometry (Sv) of 740 m− 1 [33]. The bulk foam material was charac
terized by X-ray diffraction: the analysis showed that both Si and SiC 
phases are present. In this work, SiSiC foams with length of 9.9 cm and 8 
cm were utilized. 

Rh-based catalysts are reported to be active for both reforming and 
reverse water-shift reactions, and have also demonstrated remarkable 
ability to resist coking even in demanding conditions such as CO2 
reforming of methane. [38–41]. In order to activate the SiSiC foam for 
catalytic reactions, a 1% Rh/Al2O3 catalyst was prepared in a first step 
via a wet-impregnation method using γ-Al2O3 powder (Sasol, PUR
ALOX) as morphological support and rhodium (III) nitrate solution (Rh 
10–15% w/w, Alfa Aesar) as rhodium precursor [33,37]. Afterwards, a 
washcoating slurry was prepared by mixing the catalyst powders with 
PVA (polyvinyl alcohol, Sigma-Aldrich), glycerol (Sigma-Aldrich) and 
deionized water via magnetic stirring and ball-milling (50 rpm) for 24 h. 
The SiSiC foam washcoating was achieved by dipping the foam in the 
catalyst slurry, followed by spinning (1000 rpm for 10 s) to remove the 

excess material and by flash drying in oven at 350 ◦C for 5 min. More 
details on the catalyst/slurry preparation and foam washcoating pro
cedures can be found in our previous works [33,37]. The obtained cat
alytic activated SiSiC foams are shown in SI (Section S1, Fig. S1 and 
Fig. S2). 

As shown in Fig. 1, the washcoated SiSiC foam was placed inside a 
tubular stainless-steel reactor (OD = 5 cm), as previously described 
[33,37]. The SiSiC foam was connected through electric contactors to an 
AC rheostat (Vmax = 50 V, Imax = 100 A, Belotti Variatori) hooked to the 
electric grid (230 V, 50 Hz). The rheostat allowed to vary the voltage and 
measure the current intensity. A ceramic tube (ID = 3.5 cm) was inserted 
between the foam and the stainless-steel reactor tube to insulate the 
system. To connect the foam with the AC power generator, home-made 
electric contactors were adopted, these elements are made of stainless- 
steel cylindrical plates, provided with some holes for gas flow and 
welded to a ¼’ stainless steel pipe. A thin layer of copper foam (Alantum, 
pore size 800 µm, 1 mm thickness) was placed between the SiSiC foam 
and the electrical contactors to minimize contact resistances. Moreover, 
a more robust external metallic frame structure compared to previous 
works [33,37] was adopted to apply additional force to the electrical 
contactors in order to compensate the effect of their thermal expansion. 
K-type thermocouples, electrically insulated by ceramic thermowells 
(dense alumina, dout = 3 mm, din = 2 mm), were placed inside the up
stream and downstream electric contactors to measure the temperatures 
at the upper and bottom cross sections of the foam, the measured tem
peratures were noted as Tup and Tdown, respectively. Tcap was measured 
by a fine thermocouple placed in a quartz capillary (inner diameter of 1 
mm, outer diameter 2 mm) and located at 10 mm from the centerline 
along the radial coordinate, through the Cu felt and in direct contact 
with the bottom of the foam. Another sliding thermocouple (Tslide) was 
placed inside a thermowell welded at the outer reactor wall. Tempera
tures were measured with a resolution of 1 cm, with a total length of 15 
cm equal to the reactor length. 

The electrified CO2 reforming of methane and reverse water–gas shift 
runs were performed at ambient pressure, at different temperatures, 
space velocity and feed composition. A complete list of the experimental 
runs is reported in SI (Section S3, Table S1 and Table S2). The gases were 
fed to the system individually by means of mass flow controllers (Brooks 
5851). Catalytic performance at different Tcap temperatures was 

Fig. 1. Schematic representation of the electrified reactor layout. The red dots 
indicate where the temperatures are measured. The illustration is not to scale. 
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evaluated by adjusting the input voltage, the electric current self- 
adjusting according to the resistance of the system. The outlet gas 
composition was analyzed using an online micro-GC (Agilent, 900 Micro 
GC) after removing water from the products by a condenser. An inert gas 
(nitrogen) was directly fed to the micro-GC through a by-pass as an in
ternal standard. A satisfactory closure of the carbon balance (±5%), 
considering CH4, CO and CO2 species, was obtained in all the tests. 
Water in the outlet stream was quantified according to the extents of 
reaction calculated by considering the other measured outlet species. 

3. Results and discussion 

3.1. Joule-heating of bare SiSiC foam 

Before conducting Joule-heated catalytic experiments using catalyst 
washcoated SiSiC foams in a stainless-steel tube reactor, it is essential to 
evaluate the Joule heating performance of the bare foam. For this pur
pose, a quartz tube reactor was utilized to investigate the thermal 
behavior of the foam during the Joule heating process. Fig. 2 illustrates 
the Joule heating of a bare SiSiC foam loaded in a quartz tube, the foam 
was electrically connected through homemade contactors to an AC 
rheostat. To minimize contact resistances, a thin layer of copper foam 
was placed between the SiSiC foam and the electrical contactor. To 
measure the foam temperature, one thermocouple was placed inside the 
reactor electrically insulated by a quartz capillary and in direct contact 
with the foam. Another thermocouple was located outside the reactor 
wall. 

Fig. 2 (a) shows the loaded foam at room temperature. Thanks to the 
interconnected geometry and suitable bulk resistivity of the SiSiC foam, 
it can be directly Joule heated to the relevant temperatures for electri
fied CO2 reforming of methane and electrified reverse water–gas shift 
reactions. The adopted SiSiC foam ensures uniform power distribution 
and stable electrical resistance (approx. 0.3 ohm) at 700 ◦C in 25 Nl/h 
N2 flow, as shown in Fig. 2(b). 

3.2. Electrified CO2 conversion: eCRM and eRWGS 

Catalytic tests were performed by progressively increasing the elec
trical power input. Results in Fig. 3(a) show that the structured catalyst 
could be heated by the Joule effect up to the high temperatures relevant 
for CRM and RWGS reactions, thanks to the proper geometry and bulk 
resistivity of the SiSiC foam. The washcoated foam has an average 
catalyst layer thickness of 40 µm and a catalyst density of 39.3 g/L 
considering that only 4/5 of the foam volume was washcoated (Fig. S1). 
An almost linear correlation was observed between the input power and 

the measured Tcap temperature. 
As illustrated in (Fig. 3(b)), the axial temperature profile of the 

reactor wall exhibited an increasing trend along the foam length, 
reaching a maximum in correspondence of the foam bottom section. 
Such a profile is consistent with the foam acting not only as the catalyst 
support but also as the Joule heating element [36]. A similar trend was 
observed at all the investigated temperatures (Fig. S3). 

The measured CO2 conversions closely approach the thermodynamic 
equilibrium calculated with Tcap in a wide range of conditions for both 
eCRM and eRWGS (Fig. 4). Such a close correspondence provided us 
confidence that Tcap is well representative of the outlet temperature 
from the catalytic foam. The obtained results in this work were 
compared to the literarure reports on eCRM and eRWGS with Joule 
heating in Table S3. 

The outlet product distribution and H2/CO ratio reported as a 
function of Tcap (Fig. 5) confirms the close approach to equilibrium 
above 675 ◦C. Noteworthy, at these high temperature conditions any 
CH4 formation could hardly be detected during eRWGS runs, in line with 
thermodynamics. The good catalytic performance can be attributed to 
the following reasons: (i) the intimate contact between the catalyst 
phase and the heating element results in excellent heat transfer prop
erties compared to traditional fuel combustion heating, where heat is 
generated outside of the reactor; (ii) the open-cell foam provides 
excellent mass transfer properties due to tortuous flow in its porous 
structure [42]. 

From entalphy balances it was found that the heat dissipation, i.e., 
the main source of power loss, varied almost linearly with the reactor 
temperature (Tcap) and was independent from the reaction chosen 
(Fig. 6(a)); it was thus ascribed to heat conduction through the thermal 
insulation layer of the reactor and natural convection. It is important to 
note that the ohmic losses in the wiring increase linearly with the input 
power. However, these losses were estimated to account for only 
approximately 3% of the total power input [36,37]. As for the reaction 
heat duty (Q, Eq. S8), more energy went into the reaction in the case of 
the eCRM process because of its strongly endothermic nature (Fig. 6(b)). 
This explains why eCRM requires a higher input power to reach the same 
temperature in comparison to eRWGS (Fig. 3(b)). As a result, the overall 
energy efficiency of the system, evaluated from the ratio of process heat 
duty to input power (Eq. S10), reached approx. 53% for the eCRM 
process, which was higher compared to 25% for the eRWGS process 
(Fig. 6(c)). In the SI, we predictively evaluated the performances of the 
two systems, showing an excellent agreement in terms of temperatures, 
conversions and thermal efficiencies (Section S6, Fig. S4, Fig. S5 and 
Fig. S6). Extensive research has demonstrated that utilizing direct Joule 
heating of structured catalysts within the reactor yields higher energy 
efficiency due to more selective heating of the catalysts [18,20,43–46], 

Fig. 2. Joule heating of the bare SiSiC open-cell foam (dfoam = 3.2 cm, Lfoam =

9.9 cm, Erbicol, CH) in a quartz tube. (a) SiSiC foam at room temperature, the 
foam is connected to an AC power supplier through homemade electrical 
contactors. (b) Joule heated SiSiC foam with a uniform temperature distribution 
at 700 ◦C in 25 Nl/h N2 flow, the gas flows downward from top to bottom. 

Fig. 3. Thermal performance of the electrified reactor. (a) Measured Tcap 
temperature as a function of input power during electrified CO2 reforming of 
methane (eCRM) and electrified reverse water–gas shift (eRWGS) runs. (b) 
Axial wall temperature profiles measured by Tslide during eCRM and eRWGS 
runs at the same Tdown temperature of 700 ◦C. 1 %Rh/Al2O3 washcoated SiSiC 
foam (Lfoam = 9.9 cm) with catalyst density of 39.3 g/L. eCRM: CO2/CH4 = 4, 
GHSV = 100 kNl/kgcat/h, ambient pressure. eRWGS: H2/CO2 = 2.25, GHSV =
100 kNl/kgcat/h, ambient pressure. 

L. Zheng et al.                                                                                                                                                                                                                                   



Chemical Engineering Journal 466 (2023) 143154

4

in contrast to electric oven heating where heat is generated outside of 
the reactors. Further improvement of energy efficiency is still possible, 
for example, by increasing the total flow rate and by minimizing heat 
dissipations with better thermal insulation. More importantly, a 

significant improvement of the energy efficiency up to values close to 1 
can be expected upon scale-up (Fig. S7), which facilitates quasi adiabatic 
operations [15,36]. 

The CO2 valorization performances of the proposed foam-based 

Fig. 4. Catalytic performance of the electri
fied reactor. (a) Measured CO2 conversion 
and methane conversion as a function of Tcap 
temperature during eCRM runs. (b) 
Measured CO2 conversion and hydrogen 
conversion as a function of Tcap temperature 
during eRWGS runs. The experimental re
sults (dots) are compared to the thermody
namic equilibrium conversions (lines). 1 % 
Rh/Al2O3 washcoated SiSiC foam (Lfoam =

9.9 cm) with catalyst density of 39.3 g/L. 
eCRM: CO2/CH4 = 4, GHSV = 100 kNl/ 
kgcat/h, ambient pressure. eRWGS: H2/CO2 
= 2.25, GHSV = 100 kNl/kgcat/h, ambient 
pressure.   

Fig. 5. (a) Outlet composition and (b) outlet H2/CO ratio from electrified CO2 reforming of methane (eCRM) runs. (c) Outlet composition and (d) outlet H2/CO ratio 
from electrified reverse water–gas shift (eRWGS) runs. The experimental results (dots) are compared to thermodynamic equilibrium (lines). eCRM: CO2/CH4 = 4, 
GHSV = 100 000 Nl/kgcat/h, ambient pressure. eRWGS: H2/CO2 = 2.25, GHSV = 100 000 Nl/kgcat/h, ambient pressure. 

Fig. 6. Energy performance of the elec
trified reactor. (a) The power loss of the 
system as a function of measured Tcap 
temperature during electrified CO2 
reforming of methane (eCRM) and elec
trified reverse water–gas shift (eRWGS) 
runs. (b) Reaction heat duty (Q) as a 
function of measured Tcap temperature 
during eCRM and eRWGS runs. (c) En
ergy efficiency (the ratio of reaction heat 
duty to input power) as a function of 
measured Tcap temperature during eCRM 
and eRWGS runs. 1 %Rh/Al2O3 wash
coated SiSiC foam (Lfoam = 9.9 cm) with 
catalyst density of 39.3 g/L. eCRM: CO2/ 

CH4 = 4, GHSV = 100 kNl/kgcat/h, ambient pressure. eRWGS: H2/CO2 = 2.25, GHSV = 100 kNl/kgcat/h, ambient pressure.   
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electrified reactor were evaluated based on the mole of reductant feed 
(CH4 in eCRM and H2 in eRWGS), catalyst and electrical energy inputs 
(Fig. 7). The eRWGS process reached a net CO2 consumption (NCCO2) of 
1 molCO2/molH2, consistent with the reaction stoichiometry (CO2/H2 =

1, Eq. (2). In contrast, higher values of 1.3–1.6 molCO2/molCH4 were 
achieved in the eCRM runs (Fig. 7(a)), thanks to the concurrent RWGS 
reaction where CO2 (excess CO2 as a result of CO2 rich feed CO2/CH4 =

4) further reacted with the produced H2 (Eq. (2)). The evidence for this 
aspect is provided by the Kp/Keq-rwgs ratios computed during eCRM runs: 
as shown in Fig. S8, all such values were below 1, confirming that the 
RWGS reaction is indeed favoured in eCRM conditions. 

The overall CO2 conversion rate per catalyst mass (VRCO2, Fig. 7(b)) 
reached 20 and 31 Nm3

CO2/kgcat/h for eRWGS and eCRM, respectively, 
however, higher values could be expected with the increase of the feed 
CO2/reductant ratio and especially the increase of the space velocity, 
since the system in all the investigated conditions was at thermodynamic 
equilibrium. 

The eCRM process enables higher net CO2 consumptions (Fig. 7(a)) 
and CO2 conversion intensities (Fig. 7(b)), however, it requires greater 
electric energy input to reach the target reaction temperature in com
parison to the eRWGS process (Fig. 3(b)). As a result, the specific energy 
demand for CO2 valorization (SECO2, Eq. S14) fell in a similar range of 
5.2–6.7 kWh/Nm3

CO2 for both eCRM and eRWGS processes (Fig. 7(c)). 
The SECO2 in eRWGS runs increased with input power as the heat loss 
played a major role at high temperatures; in contrast, a decreasing trend 
was observed in eCRM runs showing that a significant amount of energy 
was absorbed by the reaction. 

The Joule-heated systems in principle enable significantly high en
ergy efficiency [17]. Mathemathical model simulations demonstrated 
that approx. 95% efficiency can be reached in a 0.12 m diameter, 1.25 m 
long e-RWGS reactor operated at GHSV = 150 kNl/kgcat/h with an input 

power density of 6.5 MW/m3 (SI, Fig. S7), therefore based on this figure 
(η* = 0.95) we calculate a quasi adiabatic specific energy (SE*

CO2, Eq. 
S15) as low as 1.4 kWh/Nm3

CO2. Moreover, a big advantage could be 
gained by recovering the large fraction of sensible heat, i.e., by pre
heating the reactants, especially for eRWGS process ((Fig. 7(e)). In view 
of this, a second process integrated specific energy (SE**

CO2, Eq. S18), 
evaluated by further considering the recover of 90% sensible heat [47], 
reached approx. 0.7 kWh/Nm3

CO2 for eRWGS. In the eRWGS process, if 
the feed H2 is sourced from water electrolysis (3.8 kWh/Nm3

H2) [48,49], 
it is possible to achieve an overall specific energy consumption of 4.5 
kWh/Nm3

CO2 for CO2 valorization when operating with a recycle reactor. 
Such results are very attractive compared to solid oxide electrolyzers for 
CO2 reduction (6–8 kWh/Nm3

CO2, [13]). 
Since more energy is required to activate CH4 than H2 [3], the eCRM 

was observed to show higher SE**
CO2 values (2.3–2.6 kWh/Nm3

CO2) 
compared to eRWGS processes. In addition to CO2 valorization, the 
eCRM process could be regarded as an environmental-friendly approach 
to activate methane. The decreasing trend of SE**

CO2 with temperature in 
eCRM runs could be explained by the concurrent RWGS reaction ((Fig. 7 
(a)). This suggests that the SE**

CO2 is dependent on the feed gas compo
sition and operating temperature, therefore further reduction of this 
value is in principle feasible, e.g., by feeding a more CO2-rich gas 
mixture. 

3.3. eRWGS: Effect of H2/CO2 feed ratio 

As indicated by thermodymamics (c.f. equilibrium curves of Fig. 4), 
increasing the power input (and temperature) would have a positive, but 
limited effect on improving the CO2 conversion during eRWGS runs. On 
the other hand, as previously discussed, the CO2 conversion could be 

Fig. 7. CO2 valorization performance of the electrified reactor. (a) Net CO2 consumption per mol of converted reductant (NCCO2) as a function of input power during 
electrified CO2 reforming of methane (eCRM) and electrified reverse water–gas shift (eRWGS) processes. (b) Overall CO2 valorization rate (VRCO2) as a function of 
input power during eCRM and eRWGS processes. (c) Specific energy consumption for CO2 valorization (SECO2) as a function of input power during eCRM and eRWGS 
processes: experimental results based on input power (SECO2), the theoretical results considering an overall energy efficiency of 95% (SE*

CO2), as well as a further 
revover of 90% sensible heat (SE**

CO2). The energy distribution as a function of Tcap temperature during (d) eCRM and (e) eRWGS runs. 1 %Rh/Al2O3 washcoated SiSiC 
foam (Lfoam = 9.9 cm) with catalyst density of 39.3 g/L. eCRM: CO2/CH4 = 4, GHSV = 100 kNl/kgcat/h, ambient pressure. eRWGS: H2/CO2 = 2.25, GHSV = 100 kNl/ 
kgcat/h, ambient pressure. 
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further enhanced by increasing the H2/CO2 feed ratio. Our experimental 
results of CO2 and H2 conversions during eRWGS runs with different H2/ 
CO2 feed ratios (Tcap = 800 ◦C, GHSV = 100 kNl/kgcat/h, ambient 
pressure) are illustrated in Fig. 8. The experiments were performed using 
the same 1 %Rh/Al2O3 washcoated SiSiC foam (Lfoam = 9.9 cm) with a 
catalyst density of 39.3 g/L. CO2 conversion consistently increase with 
the H2/CO2 feed ratio up to 94.2%, which was achieved with an H2/CO2 
feed ratio of 20. However, it is evident that the system is constrained by 
thermodynamic equilibrium, and further increase the H2/CO2 feed ratio 
will not significantly enhance CO2 conversion. Moreover, operation in 
these conditions is questionable, since the separation and recycle of H2 
should be considered. We envision this solution for systems where CO is 
the main product of interest. 

3.4. eRWGS: Effect of GHSV 

To further explore the eRWGS at high GHSV, we prepared another 
washcoated SiSiC foam (Lfoam = 8 cm) with a low catalyst density of 13 
g/L. This enabled us to operate the system up to GHSV = 600 kNl/kgcat/ 
h. The washcoated foam had an average catalyst layer thickness of 13.2 
µm, considering that 4/5 of the foam volume was washcoated (Fig. S2). 
As shown in Fig. 9(a), under kinetic controlled conditions CO2 conver
sion decreases on increasing GHSV. Expectedly, such an effect vanishes 
once equilibrium is reached at the reactor outlet, which occurs at pro
gressively higher temperature on increasing the GHSV. At 700 ◦C 
equilibrium conversions were attained, even with the highest space 
velocity of 600 kNl/kgcat/h. Fig. 9(b) compares the corresponding CH4 
outlet fraction results to equilibrium. Hardly any CH4 was detected 
above 650 ◦C, consinstently with the equilibrium predictions. At low 
temperatures, lower CH4 outlet fractions were obtained with increasing 
space velocity. Heyl et al. [50], reported that CH4 was produced with CO 
as intermediate during CO2 hydrogenation over Rh/Al2O3 catalyst. This 
indicates that with incrasing space velocity, the methanation reaction 
becomes slower compared to RWGS, in line with literature reports 
[31,51]. 

Fig. 9(c) illustrates the effect of H2/CO2 feed ratio on CO2 conversion 
at GHSV of 600 kNl/kgcat/h. The system was mainly thermodynamically 
controlled above 700 ◦C for all the investigated H2/CO2 feed ratios. 
Fig. 9(d) shows that high H2/CO2 feed ratios favored the CH4 formation 
at low temperatures, in line with equilibrium. 

To verify the stability of the system, eRWGS tests were carried out 
repeatedly with Tcap of 700 ◦C and 650 ◦C (H2/CO2 = 2, 600 kNl/kgcat/ 

h, ambient pressure) at different working hours (15 h, 60 h, and 75 h), as 
shown in Fig. 10(a). The two conditions were selected as they are 
representative of the thermodynamic and kinetic controlled regimes, 
respectively. In between those selected stability runs, we also carried out 
eRWGS tests at different conditions, i.e., different space velocities and 
H2/CO2 feed ratios (c.f. experimental log from Table S2). We found that 
the structured catalyst remained stable throughout the testing period, 
with no significant drop in either CO2 or H2 conversions, as shown in 
Fig. 10(a). Additionally, the electric resistance of the system remained 
almost constant at 0.32 ohm, indicating the good electric stability of the 
foam-based reactor. Fig. 10(b) displays photos of the fresh (left) and 
used (right) SiSiC foam after at least 80 h on eRWGS stream with varied 
conditions. We observed no significant deterioration of the catalyst layer 
and just a slight color change (darkening) that can be attributed to Rh 
reduction. 

4. Conclusions 

We have proposed and successfully demonstrated the electrified CO2 
reforming of methane (eCRM) and the electrified reverse water–gas shift 
(eRWGS) reactions for CO2 valorization, based on direct Joule heating of 
catalytically activated open-cell foams. Such a reactor concept, relying 
on porous SiSiC foams that act as catalyst supports as well as heating 
substrates, allows to reach CO2 conversion approaching equilibrium in a 
wide range of operating conditions. The eRWGS process exhibits great 
potential to achieve low specific energy consumptions for CO2 conver
sion: calculations showed that 0.7 kWh/Nm3

CO2 could be reached 
assuming an overall adiabaticity of 95% and 90% recovery of the sen
sible heat. Moreover, hardly any CH4 could be detected in the products 
during the eRWGS runs above 675 ◦C. With a H2-rich feed, a CO2 con
version of 94.2% was achieved. Furthermore, the Joule-heated Rh/ 
Al2O3-coated foam exhibited excellent catalytic and electrical stability 
for more than 75 h. By replacing fuel combustion heating with Joule 
heating based on renewable electric energy, both processes are 
encouraging solutions for CO2 valorization while drastically reducing 
the carbon footprint for downstream chemical productions. By consid
ering the potential for compact small-scale reactor design as a result of 
enhanced heat and mass transfer properties, combined with the fast heat 
transfer dynamics of Joule heating, the proposed electrified CO2 valo
rization concept can be regarded as a promising option to mitigate the 

eRWGS
800 °C

100 kNl/kgcat/h

Fig. 8. CO2 and H2 conversions during eRWGS runs with different H2/CO2 feed 
ratios. 1 %Rh/Al2O3 washcoated SiSiC foam (Lfoam = 9.9 cm) with catalyst 
density of 39.3 g/L. Experiments carried out at 800 ◦C, GHSV = 100 kNl/kgcat/ 
h, ambient pressure. 

H2/CO2 = 2

600 kNl/kgcat/h

600 kNl/kgcat/h

H2/CO2 = 2

Fig. 9. (a) CO2 conversion and (b) CH4 outlet fraction during eRWGS runs with 
different space velocity: GHSV = 200, 400 and 600 kNl/kgcat/h with a fixed H2/ 
CO2 feed ratio of 2; (c) CO2 conversion and (d) CH4 outlet fraction from eRWGS 
runs with different H2/CO2 feed ratio of 0.5, 1, 2 and 3 at a fixed GHSV = 600 
kNl/kgcat/h. Experiments were carried out with 1 %Rh/Al2O3 washcoated SiSiC 
foam (Lfoam = 8 cm) with catalyst density of 13 g/L, ambient pressure. 
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intermittent nature of renewable sources by storing the excess energy in 
chemicals. 

The proposed electrified foam-based reactor system is in principle 
applicable to the Ni-based catalysts commonly reported for both 
reforming and reverse-water gas shift reactions. However, the Rh-based 
catalysts are known to offer higher activity per catalyst volume/mass. 
Combined with the excellent stability of the catalyst, and with the 
significantly reduced heat and mass transfer limitations, the Joule- 
heated Rh-catalyst washcoated foam reactor thus provides significant 
advantages in terms of process intensification, particularly in view of the 
design of compact small-scale reactors. 
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