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Municipal solid waste incineration fly ash (MSWI
FA), containing heavy metals and dioxins that can migrate and
accumulate in the biosphere, is harmful to human health and the
environment. Thermal treatment can effectively purify MSWI FA,
but it is not widely used due to high energy consumption and long
calcination time. Herein, we report an ultrafast carbothermal
process to heat ash to 3600 °C within 0.03 s for FA purification
and valuable elements recovery. After one time of ultrafast heating,
99.91% of the dioxins were removed, and the purified ash met the
leaching standards. After three ultrafast heating cycles, the removal
efficiencies of heavy metals were up to 71% for Zn, 86% for Pb,
71% for Cu, 62% for As, 100% for Hg, 93% for Cd, and 70% for Ni.
The ultrafast carbothermal process also promoted chlorine removal
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by an ash washing process due to the decomposition of CaCIOH. The condensate of volatiles was a good urban mining resource,
higher than the minimum industrial grade of ore deposit. Compared with the traditional carbothermal treatment, it consumed only
1/110 of energy and needed 1/1920 of the furnace volume. The ultrafast carbothermal process provides an efficient and
environmentally friendly way for FA purification and valuable elements recovery.

MSWI fly ash, ultrafast carbothermal process, purification, recovery

Incineration, as an important means of disposing municipal
solid waste (MSW), can efficiently reduce the volume by
85%—90% and the mass by 60%—90%, accompanied by the
production of electrical or thermal energy." MSW incineration
(MSWI) is popular particularly in densely populated countries,
where urban land resources become scarce increasingly. In
2021, 62% of unresourced MSW was incinerated in China,”
while 90% and 38% in Japan®’ and the European Union,
respectively.” Even in the United States® where the population
is not dense, incinerated MSW accounted for 15% (Figure S1).
However, incineration produces highly toxic fly ash (FA),
which is classified as hazardous waste worldwide for heavy
metals and dioxins inside.””® The annual production of MSWI
FA in China was estimated to be as high as 10 million tons in
2021.

The main way of MSWI FA disposal is landfill after
chelation, which weakens the solubility, the mobility, and the
toxicity of heavy metals.”"'" However, the long-term stability
has been widely questioned. Du et al. found that lead (Pb) and
cadmium (Cd) in the 6 year-old chelator-stabilized FA were 12
and 9.7 times the standard limits, respectively.'” Therefore, the
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old landfills pose significant environmental risks. In recent
years, the trend has been to replace landfill with cement kilns
to deposal MSWI FA in China."” Even if the heavy metals are
theoretically fixed in cement clinker, their long-term stabilities
are not clear yet. Consequently, for either landfill or resource
utilization, heavy metals are the biggest obstacle to the
harmless disposal of FA. Compared to fixing heavy metals,
removing them should be the safest method to completely
eliminate the environmental risks arising from heavy metals
release.

Thermal separation and wet separation are the main
methods of heavy metals removal from FA.'* Wet separation
uses acid washing to dissolve heavy metals from ash into
solution."> Tts operation cost is high for chemicals
consumption, wastewater treatment, and wet product drying.'®
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Figure 1. Overall process of MSWI FA pretreatment and schematic of the ultrafast carbothermal process. (a) Pretreatment process for resource
utilization of MSWI FA. (b) Physical image of MSWI FA and conductive carbon (Cabot, Black Pearls 2000) CB. (c) Reactor diagram of the

ultrafast carbothermal process. (d) Physical image of the sample heating.

Thermal separation uses high temperature to volatilize heavy
metals from FA to flue gas, which is cooled then to condense
and collect heavy metals."” Compared to the wet process, the
thermal process is simpler and therefore has more application
prospects. However, its operation cost is still too high for
industrial applications due to the high energy consumption of
ash heating. Therefore, how to lower the heating temperature
has become the hot issue of thermal separation research.
Adding chlorinating agents to FA is effective in lowering the
heating temperature. Various chlorinating agents have been
studied such as HCI, Cl,, PVC, CaCl,, MgCl,, NaCl, etc.'®"
However, it causes two other issues of more chlorides in ash
and more dioxins in flue gas.zo’21 Recently, Lane et al
proposed reduction thermal separation by 10% H,, which
lowered the heating temperature to 1000 °C without those two
issues theoretically, but it failed to remove copper (Cu).””
Regardless of what additive is used, the temperature of thermal
separation should be higher than at least the melting point of
heavy metal compounds, preferably the boiling point. There-
fore, the heatin§ temperatures in previous studies were never
below 750 °C.”

In fact, the high energy consumption is caused not only by
high temperatures but also by the heating duration, which was
up to 2 h in previous studies on MSWI FA thermal treatment.
No research has been found yet on how to shorten this
duration. In this study, we tried to shorten it from hours to
seconds by an ultrafast electrothermal process named flash
Joule heating (FJH), which has already been applied in
material synthesis,”’ material activation,”* waste manage-
ment,”"** and graphene production.”” First, the heating
characteristics of FA during the ultrafast carbothermal process
were investigated for the optimal heating parameters and the
heating mechanisms. Then, the effect of ultrafast carbothermal

process was evaluated on ash purification, valuable metal
element recovery, and chlorine removal. After that, the
condensates of volatiles were analyzed by X-ray photoelectron
spectroscopy (XPS) and energy-dispersive X-ray spectroscopy
(EDS) for the migration and transformation mechanisms of
heavy metals. Furthermore, by comparing the X-ray diffraction
(XRD) patterns of FA before and after heating, we investigated
the mechanism by which the ultrafast carbothermal process
enhances the dissolution of chlorine during the FA washing
process. Finally, the energy consumption and reactor size of
the ultrafast carbothermal process were calculated and they
were much smaller than that of traditional thermal treatment.

2. EXPERIMENTAL SECTION

2.1. Chemicals and Materials. The MSWI FA was
collected from an MSWI plant in Jiangsu, China. Carbon black
(CB) is used as the conductive additive. Detailed descriptions
of FA, CB, and their mixture for heating are provided in the
Supporting Information (Text SI).

2.2. Overall Process of MSWI FA Pretreatment. This
study proposes a pretreatment process for the resource
utilization of FA (Figure 1d). Initially, the ultrafast
carbothermal process generates high temperatures that remove
heavy metals and dioxins from FA, recovering condensates
enriched with valuable elements. Subsequently, the residue is
washed to remove chlorine, producing a wash liquid rich in
NaCl and KCl. Through this pretreatment, the FA can be
further used as a resource.

2.3. Ultrafast Carbothermal Experiments. The exper-
imental device is composed of a reaction tube, electrodes, a
capacitor bank, an infrared temperature probe, and a cold trap,
as shown in Figure 1. The mixture of FA and CB (Figure 1a)
was loaded inside the quartz tube between two electrodes. The
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Figure 2. Discharge characteristics and heating effect ultrafast carbothermal process. (a) Changes in voltage, current, and temperature over time
during the ultrafast carbothermal process at the FA/CB of 2:1 and the initial voltage of 120 V, where P1 and P2 are the corresponding time of two
temperature peaks. (b) SEM images of the sample before and after the ultrafast carbothermal process at the initial voltage of 120 V. (c) Maximum
temperatures at three mass ratios and five initial voltages from 60 to 140 V. (d) Temperatures at three mass ratios and initial voltage 120 V during

the whole heating stage.

mass of the sample processed in a single process is 0.1 g, and
according to the mass ratio of ash to carbon, three types of ash
carbon mixtures were prepared for ultrafast carbon thermal
experiments.

The cathode was made of a copper tube with graphite felt at
the front end to block the reaction material and facilitate the
gas diffusion. The anode was made of a copper rod with the
graphite powder (described in Supporting Information Text
S12) at the front end to block the reaction material and gas.
The resistance of the sample was adjusted by the compression
of the sample by two electrodes. The heating power was
supplied by a capacitor bank with a total capacitance of 90 mF.
After vacuuming, the high-voltage discharge of the capacitor
bank heated the sample in 1 s to high temperature (Figure 1c),
which was measured by an infrared temperature probe with
millisecond-level data acquisition. Such a high temperature
enables the evaporation of heavy metals, which were captured
by condensation in a cold trap that was soaked in liquid
nitrogen. Concentrated nitric acid was used to rinse the inner
walls of the condenser, ensuring that the condensate fully
dissolved without manual removal. The data presented here
represent the average results of three parallel experiments. The
steps for implementing multiple heating cycles include
charging, discharging, and adjusting the resistance. Detailed
explanations are provided in Text S15.

2.4. Water Washing Experiments. Water washing was
used to remove chlorine from the ash. Using a magnetic stirrer,
10 g of noncarbon residues was combined with 30 mL of
deionized water in a 250 mL Erlenmeyer flask, agitating at a
rate of 500 rpm. The detailed dissolution fraction of chlorine
(W¢yq) was calculated following eq S1.

2.5. Analytical Methods. The details for the analytical
methods are provided in Texts S3—S6.

3. RESULTS AND DISCUSSION

3.1. Effect of Heating and Characteristics of Dis-
charge during the Ultrafast Carbothermal Process.
Discharge and heating of three samples during the ultrafast
carbothermal process were investigated at the discharge
voltages from 60 to 140 V. A typical ultrafast carbothermal
process (Figure 2a) comprised charging, discharging, and
cooling phases. After charging for 21.8 s to reach 120 V, the
discharge was finished within 0.1 s mainly and then was
maintained at 40 V. During the discharge stage, there were two
peaks of current and temperature. The first peak was narrow
and around 180 A at 0.006 s, resulting in the sharp rise of
temperature to around 2700 °C. The second peak was broad
and around 130 A at 0.03 s, resulting in the continuous rise of
temperature to around 3600 °C. The traditional thermal
treatment of ash in plasma or resistance furnace produces the
total melting of ash, which needs water quenching for
cooling.”® During the ultrafast carbothermal process at the
initial voltage 120 V, the ash was heated to approximately 3600
°C within 0.03 s and cooled to 400 °C within 0.2 s (Figure 2a),
so the residue could be cooled naturally without water
quenching. No significant melting, even no significant
sintering, was found in the SEM image of residue, but only
slight melting was observed in the ash particle surface (Figure
2b).

During the thermal treatment of the FA, temperature is one
of the significant factors affecting the purification of FA.
Therefore, the maximum temperature reached during the
ultrafast carbothermal process was used as the evaluating
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Figure 3. Mechanism for selecting the initial voltage and the optimal ash-to-carbon ratio. (a) Theoretical changes in accumulated heat of sample
over time and sample resistance at five initial voltages from 60 to 140 V. Changes in actual sample resistance and theoretical optimal resistance over

time at (b) 120 V and (c) 140 V.

indicator for the heating effect. As shown in Figure 2c¢, the FA
to CB mass ratio of 2:1 and the initial voltage of 120 V were
the optimum parameters for ultrafast carbothermal process.

3.2. Mechanisms of Choice Are the Initial Voltage
and Optimal Ash to Carbon Ratio. Although the samples
with different FA to CB mass ratios had the same initial
resistances of 0.78 €, their heating temperatures were different.
The sample with the FA to CB mass ratio of 2:1 always had the
highest temperature during the whole heating stage (Figure
S2). To further understand the reasons for the optimal ratio,
the variation of accumulated heat (Figure 3a) of the sample
over time was calculated under the assumption of constant
resistance because it was the direct factor that determined the
sample temperature. It is evident that the accumulated heat of
sample increased with the increase of voltage and time.
However, the resistance of sample showed some complexity on
the accumulated heat. The theoretical optimal resistance
corresponding to the maximum heat increased with time
almost in a linear relationship (Figure 3a) and was
independent of the voltage. The optimal resistance calculation
during the heating period is detailed in Text S7. The actual
resistances of samples also changed over time but were
fluctuated and did not match the optimal resistance (Figure
3b). In contrast, the resistance of the sample with the FA to
CB mass ratio of 2:1 was the closest to the optimal resistance.
When the actual resistance was consistent with the theoretical
optimal resistance, the temperature peak was shown. Both two
peaks of the sample with the FA to CB mass ratio of 2:1 in
Figure 2d follows this rule, proving the correctness of the
theoretical calculations. Therefore, the change in sample
resistance over time is the decisive factor in the ultrafast
heating effect.

The conductivity of the sample is due to the presence of CB,
so the resistance of the sample includes the inherent resistance
of CB and the contact resistance between carbon particles.
During the initial stage of heating, the inherent resistance of
CB decreased with increasing temperature because of its
inherent physical property, so the downward trends of the

samples with three ratios were close. Then, the sharp rise of
sample temperature caused the rapid expansion of gas in the
sample, resulting in poorer contact between carbon particles
and consequently higher contact resistance. The sample with
the FA to CB mass ratio of 3:1 contained the least CB;
therefore, its contact resistance rose most. On the contrary, the
sample with the FA to CB mass ratio of 1:1 had the weakest
impact. This conclusion also applies to ash to carbon mass
ratios of 1:1 and 3:1. The temperature range of 0—0.1 s in
Figure 2d was selected, and it was found that the actual
resistance curve intersects with the optimal resistance curve
when there is a maximum temperature within 0—0.1 s (Figure
S7). Therefore, this conclusion also applies to 1:1 and 3:1.

Theoretically, 140 V brings more Joule heat of the sample
than 120 V (Figure 3a). Actually, the maximum temperature
was 120 V (Figure 2c). The resistances of samples at 140 V
were much higher than that at 120 V, so they further deviated
from the optimal value (Figure 3c). It seems that the heating at
140 V instantly produced significant expansion of gas, which
was unable to be extracted promptly, so the contact resistance
of carbon particles was much higher. The discussion on the
temperature differences between the 3:1 and 1:1 ash-to-carbon
mass ratios can be found in the Supporting Information, Text
S1eé.

3.3. Effect of Ultrafast Carbothermal Process on Ash
Purification. The changes in heavy metal removal efficiencies
with initial voltage (Figure 4a) agree with those in maximum
heating temperature (Figure 2c). At 60—120 V, higher voltage
was beneficial for increasing the removal efficiency, but at 140
V, the removal efficiencies were lower. At 120 V, the removal
efficiencies of heavy metals were 50% for Zn, 53% for Cu, 61%
for Pb, 44% for As, 100% for Hg, 85% for Cd, and 50% for Ni
(Figure 4b). The removal rate of Cu is particularly inspiring
because Cu has never been removed effectively by thermal
reduction of FA in previous researches. He et al.”> removed
20% of Cu from FA by 2 h carbothermal treatment at 1000 °C.
Jacob et al.** failed to remove Cu from FA by 1 h calcination at
1130 °C with the atmosphere of 7% H,. Lane et al.”* removed
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Figure 4. Removal effect of heavy metals and dioxins in FA. (a) Removal efficiencies of heavy metals at five initial voltages from 60 to 140 V. (b)
Removal efficiency of heavy metals at the initial voltage of 120 V. (c) Removal efficiencies of heavy metals under the heating times from 1 to S. (d)
Changes in resistance and maximum temperature over heating times. (e) Leaching concentrations of Hg and Pb in ash after multiple heating times.
Dashed lines represent the concentration limits of Chinese standard. (f) TEQ_ concentrations of dioxins in ash before and after the ultrafast

carbothermal process at the initial voltage of 120 V.

25% of Cu from FA by 0.9 h calcination at 1050 °C with the
atmosphere of 10% H,. Therefore, an ultrafast carbothermal
process has achieved a breakthrough in separating Cu from FA.

To further increase the removal efficiencies, the sample was
heated multiple times, and the results are shown in Figure 4c.
After heating three times, the removal efficiencies of heavy
metals were increased to 60—100%. The fourth heating could
not improve the removal efficiencies anymore because its
heating temperature was as low as 782 °C (Figure 4d). After
each heating, the resistance of the sample became smaller and
deviated from the optimal resistance, especially after the third
heating time (Figure 4d). The sample’s temperature increased
instantaneously during the heating, leading to the production
of expansion gas. This resulted in the formation of gaps within
the sample after heating, causing an increase in resistance, or,
in some cases, even an open circuit. We addressed this by
adjusting the electrode spacing to compress the sample. Chen
et al. found that nanoparticles are prone to agglomeration
during Joule heating.” Interestingly, the sample resistance
decreases after compression of the electrode, which may be

due to the agglomeration of CB. Before heating, the CB was
dispersed within the FA, and during high-temperature heating,
the CB agglomerated with the expanding gas to form a
conductive carbon pathway. Consequently, after each heating,
the sample’s resistance decreased. The sample temperature is
determined by both the voltage and the sample resistance.
When the initial voltage remains constant and the resistance
decreases, the heating temperature also decreases. The ultrafast
carbothermal process not only reduced the heavy metals in ash
but also reduced the leaching toxicity of ash. According to the
leaching standards of China, the concentrations of Hg and Pb
are unqualified in the FA, which consequently cannot be
buried in the landfill for MSW (GB 16889-2008) and is
classified as hazardous waste (GB 5085.3-2007). After one
time of heating, the leaching concentrations of Hg and Pb
decreased below both the limits (Figure 4e). The leaching
concentrations of other heavy metals in FA after heating are
listed in Table SI.

The high temperature treatment of FA for heavy metal
removal can remove dioxins as well for volatilization and
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decomposition.”* After an ultrafast carbothermal process,
99.91% of the dioxins were removed (Figure 4f). The detailed
concentration changes of various dioxin substances in ash
before and after the ultrafast carbothermal process are shown
in the Supporting Information Table S2. The reason for not
further analyzing the mechanism of dioxin removal in this
study can be found in the Supporting Information (Text S17).

3.4. Effect of Ultrafast Carbothermal Process on
Valuable Elements Extraction. Most volatilized elements
were collected in the condenser tube in the form of
microparticles (less than S ym) covered with a large number
of nanoparticles (less than S0 nm), as shown in Figure Sa. The
sample loss in the recovery system was minimal, and the
elemental balance between the residue and the condensate is
provided in the Supporting Information, specifically in Text
S13 and Figure S10. It has potential commercial value to
recover the valuable elements with high concentration in the
condensate, such as Zn, Pb, Cu, and Ti. Higher voltage was
beneficial for higher recovery efliciency but 140 V was not, so
120 V was the optimal voltage (Figure Sb), which agrees with
the changes in maximum heating temperature (Figure Sb). At
120 V, the recovery efficiencies of heavy metals were 44% for
Zn, 53% for Pb, 22% for Ti, and 47% for Cu (Figure Sc).
Although the Cu and Ti recovered were less than Zn and Pb,
their economic values are much higher. As mentioned in
Section 3.3, the ultrafast carbothermal process has extracted
much more Cu from FA than other reduction thermal
treatment. Furthermore, the extraction of Ti was successful
as well, which was reported by few studies of FA thermal
treatment.

Multiple heating times not only increased the heavy metal
removal efficiency but also increased the recovery efliciency.
The removal efficiency was used to describe the purification
effectiveness of heavy metals in FA, while the recovery
efficiency described the effectiveness of recovering valuable

elements. The definitions of removal and recovery efficiency
are provided in the Supporting Information, Text S8. After
three heating times at 120 V, the recovery efficiencies of heavy
metals were increased to 68% for Zn, 83% for Pb, 23% for Tij,
and 63% for Cu (Figure Sd). The ineffectiveness of more
heating is explained in Section 2.3. To evaluate the recovery of
valuable elements, it is better to use their concentrations in
condensate than the recovery rate of valuable elements in FA.
In the condensate collected from 3 heating times at the initial
voltage of 120 V, Zn, Pb, Ti, and Cu accounted for 25%, 11%,
2.5%, and 4.1% (Figure Se), respectively, which were increased
by 5352%, 6545%, 2461%, and 4906% (Figure Sf),
respectively, compared with their concentrations in the FA.
The concentrations of Zn, Pb, and Cu in the condensate were
much higher than the requirement of minimum industrial
grade (DZ/t0213-2002). The concentrations of Ti met was the
requirement as well. Compared to extracting these metals from
ores, extracting these metal elements from condensates is
considered easier. Because heavy metals mainly exist in the
form of chlorides and elemental substances in the condensate
as well as soluble salt impurities such as sodium chloride and
potassium chloride. Therefore, wet metallurgical technology
can be used for heavy metal recovery in condensates. The
recovery efficiencies of the other heavy metals in FA are shown
in Figure S3. The recovery efliciencies of heavy metals with the
mass ratio of FA to CB of 3:1 and 1:1 are shown in Figure S4.
The recovery plan for Zn, Pb, and Cu from condensates is
detailed in Supporting Information, Text S10. The industrial
collection system and description of condensates are provided
in Figure S9 and Text S11, respectively.

3.5. Mechanisms of Migration and Transformation of
Valuable Elements. In FA, Pb species primarily comprises
PbCl, (mp 501 °C and bp 950 °C) and PbO (mp 855 °C and
bp 1472 °C). In condensate, PbS (mp 1114 °C and bp 1281
°C) and elemental Pb (mp 327 °C and bp 1740 °C) were
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Figure 6. Analysis of the morphology of condensate and volatilization mechanism of heavy metals. (a) SEM image of the collected solids, and EDS
maps of Pb, S, O, Na, K, Ca, and Cl. Scale bar in SEM image, 2 ym; scale bars in EDS maps, 2 ym. (b) Melting and boiling points of Zn, Pb, Ti,
and Cu in their elemental, oxidized, chlorinated, and sulfurized states. (c) Pb X-ray photoemission spectroscopy (XPS) fine spectrum of the
condensate generated by the initial voltage of 120 V. (d) Zn LMM Auger spectra of the condensate generated by the initial voltage of 120 V. (e)
Mechanism diagram of heavy metals volatilization during ultrafast carbothermal process of FA.

found as the main Pb species by mapping EDS analysis (Figure elements does not overlap with Pb/S. Therefore, the ultrafast

6a) and XPS analysis (Figure 6c). In Figure 6a, the red line carbothermal process contained the reactions of Pb reduction
indicates the overlapping regions of enrichment for Pb and §, (egs 1 and 2) and sulfurization (eqs 3—8 possibly).
and the blue line represents the region enriched in oxygen
elements. In addition, PbCl, cannot be excluded but PbO can

(Figure 6a). This is because the region enriched in oxygen 2PbO + C — 2Pb + CO (1)

Reduction
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PbO + CO — 2Pb + CO, 2)
Sulfurization

CaSO, + 4C — Ca$ + 4CO 3)
2CaCIOH — Ca(OH), + CaCl, (4)
Ca(OH), —» CaO + H,0 (5)
CaS + 2H,0 — Ca(OH), + H,S (6)
PbO + H,S — PbS + H,0 )
Pb + H,S(g) — PbS + H, (8)

After three heating cycles, the recovery rate of Zn was 70%,
lower than that of Pb 85.3%. This is because the Zn in FA
exhibited greater complexity than Pb, involving volatile ZnCl,
(m.p.: 290 °C and b.p.: 732 °C) and less volatile ZnO (m.p.:
1975 °C and b.p.: 2360 °C), ZnFe,0;, ZnSiO,, and
ZnALO,*" The ZnCl, directly evaporates during the heating
process. Less volatile ZnO was reduced to elemental Zn (eqs 9
and 10, Figure 6e) through the carbothermal process, which
promoted the volatilization of Zn. Additionally, some ZnO
reacts with H,S to produce ZnS (eqs 11 and 12). In the
condensate, ZnS, elemental Zn, ZnCl,, and Zn(CO;),(OH),
were found as the main Zn species by Zn LMM Auger spectra
(Figure 6d). Therefore, the ultrafast carbothermal process
contained the processes of Zn reduction and sulfurization.

2Zn0 + C — 2Zn + CO )
ZnO + CO — Zn + CO, (10)
ZnO + H,S — ZnS + H,0 (11)

Zn + H,S - ZnS + H, (12)

The dominant Cu species in FA were mainly CuCl, (m.p.:
620 °C and b.p.: 993 °C), CuO (m.p.: 1450 °C and b. p.: 2000
°C), and CuSO, (decomposing into CuO at 650 °C).”" Since
the content of Cu and Ti in the condensate was too low to be
detected (Figure SS), it was failed to investi§ate the migration
mechanisms through experiments. He et al.”> found less than
20% of Cu was evaporated for the production of elemental Cu
(m.p.: 1084 °C) during the carbothermal treatment of FA at
1000 °C for 2 h in a N, atmosphere. In this paper, the ultrafast
carbothermal process with 3 times heating recovered 64% of
Cu, much better than the conventional carbothermal treat-
ment, because the maximum heating temperature was 3600
°C, much higher than the boiling point of elemental Cu of
2567 °C. Other species of Cu have lower melting and boiling
points (Figure 6b), making them more easily subjected to
volatilization.

The dominant Ti species in FA were not reported, so only
some theoretical analyses can be conducted. Elemental Ti
(m.p.: 1668 °C and b.p.: 3287 °C) and TiO, (m.p.: 1850 °C
and b. p.: 3000 °C) have much higher melting point and
boiling point than TiCl; (m.p.: 440 °C and b.p.: 960 °C), so
TiCl; should not be the dominant species in FA. In the form of
elemental and oxide species, Ti has much higher melting point
and boiling point than Zn, Pb, Cu (Figure 6b), so its recovery
rate was the lowest (23.6%) among four valuable elements
after three times heating. The inability to recycle Ti in previous
studies is due to the temperature limitation of the traditional
heating devices.

3.6. Effect of the Ultrafast Carbothermal Process on
Chlorine Removal by Water Washing. In the Technical
Specification for Pollution Control of Fly-Ash from MSW
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Figure 8. Decomposition mechanism of chloride salts in the ultrafast carbothermal process. (a) XRD patterns of FA and PFA. (b) Illustration of
the mechanism by which the ultrafast carbothermal process enhances the dissolution of chlorine in FA during the washing process.

incineration (HJ 1134-2020), it is stipulated that the soluble
chloride content in FA used for the production of cement
clinker should not exceed 2%, ideally lower than 1%. The
ultrafast carbothermal process lowered the chlorine content
from 22.5% to 18.5%, which is still much higher than 1%, so
the additional process was needed to remove chlorides from
the residual of the ultrafast carbothermal process. Water
washing is an effective method because most chlorides in FA
are water-soluble and it is the only method that has already
been applied in industry.

As shown in Figure 7a, water washing lowered the chlorine
content of FA from 22.6% to 3.4%, higher than the limitation
of 1%, so multiple times of washing was need. In contrast, one
time of washing was enough for the residual after the ultrafast
carbothermal process where the chlorine content was lower to
0.5% (Figure 7a). Therefore, ultrafast carbothermal process
improved the dechlorination effect of the water washing
process.

Not only chlorides but also heavy metals were dissolved in
the water during washing, increasing the difficulty of the
washing filtrate treatment for chlorides extraction.” > The
filtrate of purified fly ash washing was almost free from heavy
metals, except barium (Figure 7b). In addition, the
concentrations of sodium and potassium were not reduced

significantly. Consequently, the production of NaCl and KCI
from filtrate would not be affected, and their cost would be
lower and quality would be higher because they were from the
salt solution almost free from heavy metals.

3.7. Mechanism of the Ultrafast Carbothermal
Process Promoting Chloride Salts Dissolution in the
FA Water Washing Process. The main components in FA
(Figure 8a) are calcium salts (CaClOH, CaSO,, CaCO;) and
chloride (NaCl, KCI). Chlorides in the MSWI FA were mainly
the species NaCl, KCl, and CaCIOH. Zhao et al. utilized a CO,
bubbling washing process to remove chlorine from the FA.
They found that NaCl and KCI could be effectively removed,
but CaCIOH was not as efficiently eliminated.”® Therefore, the
dissolution of CaCIOH is more difficult than that of NaCl and
KCl during the washing process. It is considered to be the key
step in the dissolution of chlorides in the MSWI FA.

After the ultrafast carbothermal process, the chlorine content
in FA decreased from 22.5% to 18.5% (Figure 7a), indicating
that the ultrafast carbon thermal process did not significantly
remove chlorine. However, compared with direct water
washing, after the ultrafast carbothermal process, the chlorine
content in FA can be reduced from 3.4% to 0.5% by further
water washing, suggesting that the ultrafast carbothermal
process may have decomposed CaCIOH. The XRD patterns
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Table 1. Comparison of Energy Consumption between Ultrafast Carbothermal Process and Lab-Scale Tubular Furnace

thermal treatment methods waste reactor
lab-scale ultrafast carbothermal process FA FJH
expected industry ultrafast carbothermal process FA FJH
lab-scale carbothermal treatment FA HTE
lab-scale thermal treatment PCB HTF*

“Horizontal tube furnace. "Printed circuit board.

(Figure 8a) show a significant reduction in the peak of
CaCIOH, and the appearance of peaks for CaO and CaCl,,
confirming that CaCIOH in FA decomposes into water-soluble
CaCl, and CaO at high temperatures (Figure 8b). In washing
with a low liquid-to-solid ratio, CaClIOH is considered to be
semidissolved, so after the ultrafast carbothermal process, more
chlorine dissolved in the water, promoting the removal of
chlorine.

3.8. Analysis of Energy Consumption and Reactor
Size. Although the maximum temperature reached 3600 °C,
the heating time was only 0.3 s, so the energy consumption of
the ultrafast carbothermal process was still low. In addition, the
sample was self-heated instead of being heated by an external
heat source, resulting in low heat loss and high heating
efficiency. As shown in Table 1, the energy consumption of
ultrafast carbothermal process was 4917 kW h/ton, only 1/110
and 1/188 of the energy consumptions of traditional
carbothermal/thermal treatment reported by He et al.’* and
Balaji et al.*' The detailed calculation of energy consumption
during the ultrafast carbothermal process is shown in Text S9.

Furthermore, the industrial energy consumption of ultrafast
carbothermal process is expected as 2947 kW h/ton (Text S9).
Because the time of the ultrafast carbothermal process is less
than one s and that of traditional thermal treatment is more
than one h, the volume of FJH reactor could be much smaller
than that of a rotary kiln at the same capacity, estimated to be
only 1/1920 (Table S4). Therefore, the ultrafast carbothermal
process has significant advantages in energy consumption and
reactor size. Additionally, our preliminary design for the
industrialization of Joule heating features a six-tube linkage
system, where two tubes and two sets of reactors discharge
simultaneously. Detailed information can be found in Text S15
and Figure S6. This study primarily aims to demonstrate a low-
energy, highly efficient method for removing heavy metals and
dioxins from FA; therefore, only energy consumption was
investigated. The total cost is not calculated because many
consumable materials in laboratory-scale experiments are
expensive and are expected to be replaced by cheaper
materials. The detailed discussion is shown in Text SI11.

Municipal solid waste incineration fly ash (MSWI FA) is
classified as hazardous waste®*" for heavy metals**~** and
dioxins inside. Thermal treatment®’~*" is the promising way to
purify MSWI FA, but not widely used for high energy
consumption and long calcination time. In this work, the
ultrafast carbothermal process was proposed as a new thermal
process of the MSWI FA for its low energy consumption and
ultrafast heating. The mixture of ash and carbon was heated to
3600 °C within 0.03 s under the optimal operating condition
(initial voltage = 120 V, FA to CB mass ratio = 2:1, and initial
resistance = 0.78 Q), which was interpreted by the theoretical
calculations. After three times of ultrafast heating, the removal
efficiencies of Zn, Pb, Cu, As, Cd, Ni, and Hg were up to 72%,

energy consumption kW h/ton

heating time s heating temperature °C

4917 0.3 max 3600

2947 0.15 max 3600
296,000 7200 1000
500,000 18,000 920

86%, 71%, 62%, 93%, 70%, and 100%, respectively, the
removal efficiency of dioxins was 99.91%, and the purified ash
met the leaching standards. The ultrafast carbothermal process
also promoted chlorine removal by the ash washing process
due to the decomposition of CaCIOH in FA at high
temperature. The concentrations of valuable Zn, Pb, Ti, and
Cu in the condensate of volatiles were 25%, 11%, 2.5%, and
4.1%, respectively, higher than the minimum industrial grade
of ore deposit, so these valuable elements have a good recovery
value. Compared with the traditional carbothermal treatment,
the ultrafast carbothermal process here consumed only 1/110
of energy and needed 1/1920 of the furnace volume.
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