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Abstract: Semiconductor oxides belonging to various families are ideal candidates for application
in photocatalytic processes. One of the challenges facing photocatalytic processes today is improv-
ing their efficiency under sunlight irradiation. In this study, the growth and characterization of
semiconductor oxide nanostructures and composites based on the ZnO and CuO families are pro-
posed. The selected growth method is the resistive heating of Zn and Cu wires to produce the
corresponding oxides, combined with galvanic corrosion of Zn. An exhaustive characterization of
the materials obtained has been carried out using techniques based on scanning electron microscopy
and optical spectroscopies. The method we have followed and the conditions used in this study
present promising results, not only from a degradation efficiency point of view but also because it is
a cheap, easy, and fast growth method. These characteristics are essential in order to scale the process
beyond the laboratory.

Keywords: zinc oxide; copper oxide; photocatalysis; Joule heating; galvanic corrosion

1. Introduction

Among the different types of materials, Transition Metal Oxides (TMOs) are gaining
relevance every day due to their wide range of applications, versatility, and advantageous
physical properties (conductive, magnetic, luminescent, etc.), enabling the fabrication of
multifunctional systems [1]. However, for these applications to be really viable, much
deeper knowledge about critical factors such as carrier concentration, recombination rates,
mobility, defect structure, and their influence on the band structure (and hence on most
relevant properties) is needed. Nanowires, and nanostructures in general, have been
studied in recent decades for their different properties and applications compared to
those of bulk materials and, in particular, for their increase in surface-to-volume ratio,
which makes them much more efficient in many applications such as gas sensing [2–5] or
photocatalysis [3,6–11]. Besides the physical properties required for an application, material
selection criteria such as stability, low toxicity, non-criticality, low price, and versatility are
of the utmost importance. On the other hand, the fabrication of hybrid or composite micro-
and nanostructures is becoming a very active field [12–18], and the presence of several
metal oxides in applications such as photocatalysis or sensing is attracting increasing
interest [3,19,20].

A variety of methods have been used to grow these structures on various substrates
or in different environments, with the aim of discovering new physics at the nanoscale.
Our goal is to grow nanostructures from a metal oxide to increase the surface-to-volume
ratio. Methods such as CVD (Chemical Vapor Deposition) or VLS (Vapor–Liquid–Solid)
methods have typically been used for the growth of structures [6,21,22], but in most cases,
they require long treatment times and can be expensive. A fast and cheap alternative is
resistive heating that uses the Joule energy losses that appear in a metal when a current is
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circulated through it. In the presence of an ambient atmosphere, the hot metal wire oxidizes
and a core (metal wire)/shell (oxide layer) is formed. Oxidation takes place in seconds;
hence, this method allows us to greatly reduce treatment time and costs while achieving a
high density of nanostructures [23–25].

As has been mentioned, the variety of possible applications of these nanostructures
is very broad. In this work, we will focus on photocatalytic activity. Nowadays, catalytic
processes are probably one of the hottest topics, since they are involved in environmental
problems as severe as the production of hydrogen by water splitting and the elimination
of pollutants from water. In water remediation processes, photocatalysis plays a central
role [11], given the increasing problem of water contamination by effluents released from the
rising expansion of textile, leather, paper, and ink industries. Heterogeneous photocatalysis
based on TMOs is a process by which light absorption by the photocatalyst results in
photoexcited electrons. These are transferred from the valence band (VB) to the conduction
band (CB), resulting in electron–hole pairs. Such pairs are able to reduce and/or oxidize
the molecules of the adsorbed compound (f.i. azo dyes) on the surface of the catalyst,
degrading them to form CO2, H2O, and simple mineral acids [26–29].

In the case of TMOs, the catalytic activity originates basically from two sources: the
generation of •OH radicals through the oxidation of H2O, and the generation of O2

•− radi-
cals through the reduction of O2. An electron can be transferred to an acceptor molecule if
its reduction potential is below the CB of the photocatalyst. Correspondingly, a hole can be
transferred to an acceptor molecule if its reduction potential is above the VB of the photo-
catalyst. The basic photocatalytic mechanism is schematized in Figure 1a. The pre-requisite
for a TMO to be efficient as a REDOX mediator is that the redox potential for the radicals or
reactants involved (for instance, in the case of photocatalysis, Eo (H2O/•OH) = 2.8 V and
Eo (O2/O•−2 ) = 0.28 V vs. NHE) lies within the bandgap of the TMO (Figure 1b).
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Figure 1. (a) A schematic illustration of the photocatalysis process in a TMO. (b) A schematic
comparison between the bandgaps of some relevant TMOs and some common redox pairs.

To date, different TMOs have been investigated for photocatalytic applications. The
main characteristics of the material that determine its potential use as a photocatalyst are a
suitable range of forbidden energies (bandgap), the lifetime of the photogenerated e−/h+

charge carriers, charge carrier transport to surface reaction sites, their morphology, a high
surface-to-volume ratio, their stability, and their capacity to be reused (recovered from
reactor). ZnO has been widely used as photocatalyst; however, due to the wide bandgap,
its efficiency under sunlight is very limited, requiring the use of ultraviolet irradiation to
trigger the photocatalytic process, although several strategies are used to overcome this
limitation [22,30–36]. The two basic approaches are surface modification by sensitization or
coupling with a narrow bandgap material, and bandgap engineering by creating defect
states within the bandgap, for instance, by doping with transition metals of rare earth
elements that might create levels in the bandgap associated to the d or f partially filled
shells [22].

Another approach is the creation of hybrid structures by combining the active oxide
with another material with a different bandgap, creating a heterojunction that not only
modifies the light absorption properties but also prevents carrier recombination, enhancing
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the photocatalytic activity [27,35]. ZnO- and CuO-based systems are highly suitable for
creating new architectures in combination with many other systems [1,37,38].

2. Materials and Methods

The precursor materials were Zn and Cu wires of 0.25 mm and 0.2 mm in diameter,
with a purity of 99.99% and 99.9%, respectively. The resistive heating method used to
carry out the heat treatments consisted of placing wires of about 7 cm in length with the
ends contacted to metal electrodes, and then circulating a current through them. The
experimental system used is shown in Figure 2.
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Using this procedure, three sets of samples have been prepared. Single metal wires
of Cu and Zn were oxidized to form Zn/ZnO and Cu/CuO core–shell structures (series
single wires, SWs). The second set was produced when each of the metal wires was
oxidized in the presence of powder of the other element. Zn was oxidized while immersed
in a CuO powder bath, and conversely, the Cu wire was oxidized while immersed in
a ZnO powder bath (series immersed wires, IWs). This procedure has been previously
reported as effective to obtain doped ZnO [23]. Finally, a series of braided wires, BWs,
where the Cu and Zn wires were twisted together forming a sort of braid prior to the
passage of the electric current, formed in this case not only Zn/ZnO and Cu/CuO but also
CuO/ZnO heterojunctions.

To characterize the morphology of the nanostructures, an FEI Inspect SEM scanning
electron microscope was used (FEI Company, Eindhoven, The Netherlands). The composi-
tional analysis of the samples was performed with X-ray microanalysis (EDS) with a Bruker
detector, AXS Quantax, coupled to a Leica 440 SEM (Leica Cambridge Ltd., Cambridge,
UK), or a QUANTAX 70 detector (Bruker, Berlin, Germany) incorporated into a Hitachi
TM3000 (Hitachi High Technologies Corporation, Tokyo, Japan). The photoluminescence
(PL) of the samples was analyzed using a LabRAM HR800 confocal microscope (Horiba
JobinYvon, Villeneuve d’Ascq, France), excited with a 325 nm wavelength He–Cd UV laser
and a 633 nm He–Ne laser for Raman spectroscopy. To investigate the cathodoluminescence
(CL) of these samples using SEM, a Hamamatsu PMA-12 CCD (Shizuoka ken, Japan) was
used on a Hitachi S-2500 SEM (Tokyo, Japan).

The photocatalysis experiments were performed using Rhodamine B as a pollutant
simulator. A stock solution with 10 mg of the dye (Rhodamine B, Sigma-Aldrich (Saint
Louis, MO, USA), with a purity greater than or equal to 95%) in 10 mL of distilled water
was prepared. This resulted in a concentration of 100 ppm. Subsequently, to achieve the
2.5 ppm we used in the photocatalysis tests, 12.5 mL of stock solution was diluted in
500 mL of distilled water. We checked the degradation of the dye by measuring UV and
visible light absorption curves with a Shimadzu UV-1603 spectrophotometer (Shimadzu
Corporation, Kyoto, Japan) and with a UV-vis Jasco V770 (Jasco, Madrid, Spain) as a
function of illumination time. The degradation experiments were performed by adding
the Joule oxidized wires into 5 mL of dye solution and placing the glass containers into a
homemade reactor. The illumination was performed using commercial LED strip lights
(2 strips of 25 W for UV (peak wavelength at 405 and 365 nm) and 2 strips of 35 W (CRI > 90)
for simulating sunlight) purchased from growthejungle.com (accessed on 1 June 2024).

growthejungle.com
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3. Results
3.1. Characterization of the Samples
3.1.1. Series SW (Single Wire)

For a single Zn wire (SWZN), we performed current tests in the range of 3.2–4.2 A,
obtaining the best results in terms of the density of nanostructures with a current of 3.8 A.
Although experiments with different rates of increasing current have been performed, the
best results in terms of the reproducibility and homogeneity of the grown structures are
obtained when the application of the current is stepwise [39,40]. All of the treatments for
this series were carried out for 40 s.

After heat treatment, the sample SWZN shows a uniform layer of oxide coated with
ZnO nanostructures. To study the morphology of these growths, we used scanning elec-
tron microscopy, as shown in Figure 3a. We observed a high density of homogeneously
distributed nanowires, with lengths between 1 and 2 µm and diameters of up to a few
hundred nanometers.
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Figure 3. SWZN samples. (a) A SEM image of the ZnO nanowires obtained on the surface of the
Zn wire. (b) The EDS spectrum recorded on the surface. (c) The BSE image and EDS map of the
distribution of Zn (red) and oxygen (cyan) through the cross-section of the Zn wire. (d) The EDS
signal profile along a line crossing the oxide layer. (e) CL (up) and PL (down) spectra. (f) The resonant
Raman spectrum (λexc = 325 nm) obtained on the surface covered with nanowires.

As the heat treatment was performed in an ambient atmosphere, it was expected that
oxidation would occur in the outer layer of the wire [23]. To confirm this fact, we performed
EDS measurements (Figure 3b), which provided us with information about the elemental
composition of the sample, in our case Zn and O. The results of the cross-sectional study
show that the layer observed in the SEM (upper c) and EDS (lower c) images in Figure 3 is
about 14 µm thick according to the measured EDS line (Figure 3d).

The formation of ZnO is confirmed by performing luminescence spectra. Figure 3e
shows the PL and CL spectra, where we see the characteristic emission bands of ZnO. We
identified the emission peak of the forbidden energy band of ZnO, and that was due to
material defects [1,41–44]. Both PL and CL spectra show that the near-band edge (NBE)
peaked at 380 nm without noticeable differences. On the contrary, visible differences are
found between the PL and CL visible bands. In the first case, the band is considerably
narrower and is centered at a slightly lower energy. Nevertheless, the relative intensities of
the different components seem to be similar, giving a broad but almost symmetric band.
The CL visible band is much broader and asymmetric, indicating the presence of several
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components with different relative intensities. The main peak is centered at 510 nm close to
the high-energy component in the PL spectrum. The low-energy side of this band is not
well defined, indicating the presence of several components of similar relative intensities
extending toward the red part of the spectrum. A bump in this region is observed close
to the lowest-energy component of the PL spectrum. These differences are attributed to
the differences in the excitation source, since in the case of CL, not only can carriers be
promoted to higher energy levels but a huge number of electrons that can populate the
defect levels in the gap are introduced.

To further assess the good crystallinity of the grown structures, Raman spectroscopy
experiments were performed. The characteristic spectrum obtained by excitation with
a 325 nm laser is shown in Figure 3c. Here, we can identify the characteristic peak of
ZnO, corresponding to the E2

high (LO) mode which peaked at 571 cm−1 and its replicas, in
agreement with previous works [45].

On the other hand, the best condition for the growth of copper oxide on a Cu wire is a
current of 7 A applied for 60 s. After the Joule heating process, Cu wires (SWCUs) show
a coating made up of submicron crystals and nanowires of lengths of 1–2 µm. We have
observed these structures using SEM, as shown in Figure 4a. As in the case of the zinc
wire, the presence of the copper oxide layer has been assessed by Raman measurements
(Figure 4b). As expected, the luminescent emission of CuO is very weak; therefore, the
results of Raman spectroscopy are more reliable. In Figure 4b, the peaks corresponding to
the active Raman modes in CuO are shown. The peak of 293 cm−1 corresponds to the Ag
mode and the peaks of 331 and 626 cm−1 to the two Bg modes [46,47].
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Figure 4. SWZN samples. (a) A SEM image of the CuO nanowires and microcrystals obtained on the
surface of the Cu wire. (b) The Raman spectrum (λexc = 633 nm) obtained on the surface covered with
nanowires. (c) The EDS spectrum recorded on the surface. In the inset, EDS map of the distribution
of Cu (red) and oxygen (cyan) through the cross-section of the Cu wire is presented.

The composition of the wires was studied by EDS (Figure 4c), and the peaks observed
confirm the presence of Cu and O in the crust. The cross-section allowed us to estimate the
layer thickness, about 6 µm (Figure 4c).

3.1.2. Series IW (Immersed Wires)

In order to prepare the first set of composite samples, the wire of one of the metals
was immersed in oxide powder of the other metal (i.e., Zn wire in CuO and Cu wire in
ZnO). The required currents to achieve growth are higher than for the SW series, since a
larger amount of mass has to be heated (wire + powder). For the Zn wire in CuO (IWZN),
the optimal current is 4.2 A, applied for 30 s. It is observed that higher currents or larger
periods of time lead to the failure of the Zn wire at the region that is outside the powder.

The results obtained for the best IWZN sample are shown in Figure 5. SEM images
show the formation of an oxide layer in which powder microparticles are embedded
(Figure 5a). The density of nanowires is reduced in comparison with the SWZN samples,
and the lengths are shorter (in the range of tens to hundreds of nm). X-ray microanalysis
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measurements indicate that the embedded powder is mainly copper oxide (Figure 5b),
which is surrounded by a layer of ZnO, as confirmed by EDX and Raman (Figure 5c)
measurements.
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Figure 5. IWZN samples. (a) A SEM image of the surface of the Zn wire immersed in CuO powder
after Joule heating. (b) EDS measurements on the IWZN samples. The inset shows the composi-
tional map, where the Zn signal is presented in red and the Cu signal in blue. (c) Raman spectra
(λexc = 325 nm) of the surface of the IWZN wires.

On the other hand, for the Cu wire in ZnO powder, a current of 10 A for 120 s can be
maintained without the failure of the Cu wire. This allows the wire to produce a thicker
oxide layer with microcrystals, as shown in Figure 6a. EDX measurements confirm that zinc
oxide powders are embedded in the matrix of copper oxide microcrystals (Figure 6b). More
information is obtained from the Raman spectra performed (Figure 6c). Peaks associated
with CuO modes are located at 293, 341, and 626 cm−1, similar to those observed in the
SWCU samples. However, new peaks are observed in this case, at 147 and 221 cm−1. They
can be ascribed to Cu2O [47] (T1u and 2Eu, respectively). The appearance of this lower
oxidation number oxide may be related to the growth conditions, as the wire is in contact
with ZnO powder instead of with the air, reducing the amount of oxygen available in the
process. This effect can also be related to the reduced density of nanowires obtained in the
IWZN samples.
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Figure 6. IWCU samples. (a) A SEM image of the surface of the Cu wire immersed in ZnO powder
after Joule heating. (b) EDS measurements on the IWCU samples. The inset shows the compositional
map, where the Zn signal is presented in red and the Cu signal in blue. (c) The Raman spectrum
(λexc = 633 nm) of the surface of the IWCU wires.

3.1.3. Series BWs (Braided Wires)

Finally, a third series was prepared by twisting together two wires, one of each
element. A more complex structure is then obtained, since both oxide layers might show
cross-doping (ZnO:Cu and CuO:Zn) to some extent. Besides cross-doping effects at the
closest contact points, ZnO:CuO heterojunctions might form. The Cu and Zn wires were
strongly crisscrossed and fed into the Joule heating system. In this case, it was determined
that the optimal growing conditions were a 9A current for 60 s. With SEM, we saw a
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substantial improvement in the density of nanowires grown after heat treatment (Figure 7).
EDS analysis of these samples shows effective cross-doping in both oxide shells (Figure 7b).
We have confirmed the presence of copper in the Zn wire and vice versa. In addition, we
see characteristic peaks of C and Al due to the specimen holder and the carbon tape used
to fix the samples to the sample holder.
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Figure 7. (a) A SEM image of the braided nanowires: Cu wire (right) and Zn wire (left). (b) X-ray
maps (center) and spectra (Cu wire (right) and Zn wire (left)).

3.2. Photocatalysis Experiments

Photocatalysis experiments have been performed with all three series. As mentioned
in the Section 2, Rhodamine B was used to simulate the pollutant. The degradation process
was monitored by recording the UV-Vis absorption spectra of the solution with the different
catalysts as a function of illumination time [48,49], and the degradation efficiency was
calculated using the following expression:

% =
C0 − Ct

C0
× 100%

where C0 is the initial concentration and Ct is the concentration at time t, both computed
from the maximum of the Rhodamine absorption spectrum (at 554 nm). The degradation
efficiency was determined for all of the samples after 6 h of UV plus visible light illumina-
tion, and both UV and visible illumination separately. This irradiation time is longer than
in other reports due to the lower power of the lamps and the smaller concentration of the
catalyst. That is, the catalyst is not the whole wire but just the micrometric oxide coating.

The wires from the SW series show poor degradation rates under UV+Vis illumination,
obtaining a degradation efficiency of 12% for the SWZN samples and of 1.5% for the SWCu
samples after 6 h of irradiation. Better results are observed for the sample sets with
ZnO/CuO composites. The results for all of the illumination conditions are shown in
Figure 8.

From the graph in Figure 8, it is clearly observed that the samples with the better
performance are those of the BW series. This is particularly true for the visible illumination
conditions, although the efficiency is considerably improved when the combination of
both UV and visible light is used. Since one of our main goals is to study the materials
appropriate for solar photocatalysis, this series was selected for the detailed kinetic study.
The Rhodamine absorbance and the concentration ratio is plotted as a function of time
(Figure 9a,b), for a 100 mL solution of 2.5 ppm of Rhodamine B with five BWs inside it.
We have observed that the degradation is negligible for the first 3 h, whereas it starts
to be more effective after that period. Two regimes can be identified when plotting the
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pseudo-first-order kinetics (ln (C0/C) versus time, Figure 9c), the first with a rate constant
of 9.2 × 10−5 min−1 and the second with a rate constant of 1.4 × 10−3 min−1.
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To understand what is happening, the sample was collected and characterized after
being immersed for 3 h in the solution. The SEM images are presented in Figure 10a
for both Cu (up) and Zn wires. The morphology of the surface is completely different
compared with the images in Figure 7a. On both wires, flower-like microstructures appear.
Leaving the BW in the solution for longer periods of time (from days, Figure 10b, to a
month, Figure 10c) shows that the modification of the sample continues, revealing flake-like
microstructures. More interestingly, when the sample was left in air (Figure 10d), flower-
like structures with hexagonal rods substituted the flakes. A comparison of the BW sample
before (Figure 7a), after 3 h (Figure 11a), and after the whole process (Figure 11b) indicates
that the sample surface is completely changed.

Further information about the modification that the sample is suffering is sought
through EDS measurements (Figure 11c–e). If we compare the EDS maps with that pre-
sented in Figure 7b, it can be observed that Zn (red) starts to cover the Cu (cyan) wire after
3 h in the solution. The covering is almost completed after 5 days. After 1 month, it is not
possible to identify the Cu wire due to the thickness of the Zn cover. From these observa-
tions and considering that Zn-Cu forms an efficient galvanic pair, the phenomenon may be
related to galvanic corrosion of Zn. This effect has been previously reported by Takahashi
et al. in Zn and Cu plates put in contact in neutral water under UV irradiation [50]. The
formation of ZnO on Cu through galvanic corrosion has been reported to increase the
visible photocatalytic performance [51,52], in agreement with our results.
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Figure 11. SEM images of the surface of the BW after (a) 3 h and (b) 1 month in the solution. EDS
maps for the BW after (c) 3 h, (d) 5 days, and (e) 1 month in the solution. In the EDS maps, the Zn
signal is presented in red and the Cu signal in blue.

Raman measurements have been performed to corroborate the galvanic corrosion.
The spectra are gathered in Figure 12. When the process has been carried out for 3 h,
flower-like structures made of hexagonal microrods present the characteristic resonant
Raman modes of ZnO (Figure 12a). When the process is extended for more days (until
1 month), two different Raman spectra are detected (Figure 12b,c). The peaks at 383, 734,
1060, 3408, and 3581 cm−1 are ascribed to a zinc hydroxide, with the last two peaks related
to -OH vibrations (Figure 12c). Peaks at 1360 cm−1 and 1555 cm−1 are related to carbonate
vibrations; so, all of these modes indicate the formation of zinc hydroxide carbonate or
hydrozincite (Zn5(OH)6(CO3)2). The formation of this compound has been observed in the
corrosion of Zn in marine environments [53].

Combining the observations by Takahashi et al. and Li et al. [50,53], the reaction that
is produced is as follows: First, the galvanic reaction is established when Zn and Cu are
in contact inside the solution, releasing Zn2+, e−, and OH−. As there is no Cu2+ in the
solution, zinc loses electrons and migrates toward regions where OH− is accumulated
(mainly in the vicinity of the Cu surface) and reacts to form zinc hydroxide carbonate:

5Zn2+ ++6OH− + 2CO2−
3 → Zn5(OH)6(CO3)2

where CO3
2− comes from the degradation products of Rhodamine B. Once zinc hydroxide

is deposited, it is further decomposed into ZnO, as confirmed by the appearance of ZnO
resonant Raman modes (Figure 12b). If the sample is left in air, galvanic corrosion is stopped,
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and all of the zinc hydroxide is finally transformed into ZnO (Figure 12d). According to
Takahashi et al. [50], the presence of ZnO nanoparticles promotes the enhancement of
the local alkaline region through photochemical reactions; so, the presence of the ZnO
nanowires formed by Joule heating is assisting the galvanic process:

ZnO + hν→ ZnO
(
e− + h+

)
H2O + h+ → •OH + H+

•OH + e−aq → OH−
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Finally, we tested the degradation performance of the BW once it was covered com-
pletely in ZnO rods produced by galvanic corrosion (Figure 10d). After 6 h of UV+Vis
illumination, a degradation efficiency of 23% is determined, whereas an efficiency of 25%
and 8% is obtained under UV and visible irradiation, respectively. If we compare these
values with those for the BW fresh samples in Figure 8, it can be inferred that the exchange
between Zn and Cu during galvanic corrosion is helping in the photocatalysis process.

4. Conclusions

All of the sample series obtained by Joule heating have a uniform layer of metal oxide
grown in very short treatment times, in the order of tens of seconds. The efficiency of this
method is indisputable compared to other more expensive and time-consuming options.
An additional advantage of this type of growth for the application we have selected,
photocatalysis, compared to the use of suspended nanoparticles, for example, is its easy
recovery. It is not necessary to subject the treated liquid to any subsequent process to collect
the catalyst, as the wires are easily salvageable. This allows for the characterization of the
photocatalyst after the process.

After finding the optimal growth conditions, the properties exhibited by ZnO/CuO
composite samples are interesting for photocatalysis. The configuration that yields the best
results is that of the Zn-Cu braided wires, due to their significant and uniform nanostruc-
tured coating, as well as slight mixed doping at the interface between the oxide layers. The
photocatalysis tests performed, using Rhodamine B as a simulated pollutant, indicate that
these samples produce significant degradation with both UV and visible illumination. The
illumination of the contacted Zn-Cu braided wires, combined with the oxides formed on
their surface by Joule heating, promotes the enhancement of the galvanic corrosion that
produces ZnO nanorods, which help in the overall photocatalytic process.
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