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A B S T R A C T   

Due to energy crisis and environmental pollution, it is urgent to develop efficient and cheap catalysts for 
hydrogen production from water electrolysis. As a cheaper platinum group metal, Ru, a cheaper platinum group 
metal, is a highly competitive candidate to Pt because of the similar bond energy of M-H. Herein, TiO2 @ni
trogen-doped carbon composite supported superfine Ru nanoparticles was synthesized by high temperature 
shock in a Joule furnace using Ti-MOF support (Ru/TiO2 @NC-J). In the extremely rapid process, MOF was 
quickly converted into highly conductive nitrogen-doped carbon with tiny TiO2 dispersed in it, and superfine Ru 
nanoparticles were generated simultaneously in less than 0.5 s. The obtained Ru/TiO2 @NC-J displays wonderful 
HER performance in the wide pH range. In 1.0 M KOH solution, the overpotential was as low as 11 mV at 10 mA 
cm− 2 and a Tafel slope was 39.2 mV dec− 1, which far exceeded the activity of Pt/C and conventional calcined 
samples as well as most of the recently reported catalysts. The as-developed electrocatalysts also showed 
excellent stability to accommodate large working current for long term test without obvious activity loss in 
universal pH range. Experimental investigations suggest that the strong metal-support interaction dominantly 
facilitate the activity of electrocatalytic hydrogen evolution reaction (HER), and stability of Ru/TiO2 @NC-J. 
This strategy provides a new and super-fast methodology to prepare low-budget and high-performance HER 
catalysts for practical applications.   

1. Introduction 

With the increasing environmental pollution and the depleting of 
fossil fuels, the need for clean energy and renewable energy becomes 
more and more urgent [1]. Hydrogen energy is well-accepted as a 
promising new generation fuel because of its abundant reserves, high 
energy density and pollution-free [2–6]. Water electrolysis driven by 
from renewable energy is an important technology to produce hydrogen. 
However, electrochemical water splitting is restricted by the slow 
hydrogen evolution reaction (HER) kinetics [7,8]. In order to boost the 
production of hydrogen, stable and efficient electrocatalysts are needed. 
In the industry, platinum (Pt)-based materials are the most commonly 

used HER electrocatalysts, which have extremely high current density 
and reaction kinetics. Unfortunately, they are scarce and expensive for 
large industrial application. Therefore, it is of significant urgency to 
design low price, high efficiency and high stability electrocatalysts to 
replace Pt [9]. 

Materials scientists have been considering nonprecious metal com
pound catalysts as alternative options, such as transitional metal oxides 
[10,11], sulfides [12], nitrides [13,14], selenides [15,16] and phosphide 
[17,18]. Doping or alloying non-noble hetero elements with host cata
lysts have been widely used s to explore new alternatives to Pt [19,20]. 
For example, doping of 3d transition metals such as Fe, Co, and Ni have 
been proven effective to improve HER activity [21,22]. Unfortunately, 
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those materials are usually limited by low efficiency and instability 
because of their susceptibility to corrosion in strong acid or basic solu
tion [23]. Moreover, their performances are still far from approaching 
those of precious metal-based catalysts [24,25]. So, although over the 
last several decades have witnessed the prosperity of noble metal-free 
electrocatalysts with encouraging catalytic performance, few of them 
have comparable HER activity and stability with benchmark Pt-based 
electrocatalysts [26,27]. 

Ruthenium (Ru), one of the cheapest noble metals, shows great po
tentials to be alternative HER electrocatalysts because it has only 4% of 
the cost of Pt but similar electron configuration like Pt [28–30]. So, Ru 
has moderate H* adsorption energy, strong anticorrosive ability and 
excellent activity in a wide pH range [31,32]. Moreover, Ru has stronger 
oxyphilic binding, leading to better water dissociation ability [33]. 
Thus, previous reports have revealed that some Ru-based catalysts show 
comparable intrinsic HER activity or even better than that of Pt, espe
cially in neutral or alkaline solution [34,35]. However, because of their 
high surface energy, Ru nanoparticles prone to aggregate, which leads to 
the degradation of HER performance. Therefore, evenly dispersing or 
anchoring Ru nanoparticles on suitable support with large specific area 
becomes a feasible strategy, which can not only reduce the usage of 
noble metals, but also improve the catalytic performance of the catalyst 
[7,36]. 

Metal-organic framework (MOF) is a class of crystalline porous ma
terials composed of different metal nodes and organic linkers [37]. 
Being versatile and tailorable, MOF has excellent chemical adjustability 
and controlled function without changing the structure, which allows us 
to flexibly design the materials. Notably, materials (oxide [38], carbon 
[39] etc.) derived from MOFs have higher porosity and larger surface 
area, which can enhance mass transfer and diffusion during the reaction 
process [40]. The carbon components produced through direct pyrolysis 
of organic ligands can also promote electron transfer throughout the 
structure. At the same time, carbon components can effectively anchor 
nanoparticles, ensuring their small size and high dispersion, and 
improving the final catalytic activity [41]. Therefore, MOF shows great 
advantages in the construction of efficient electrocatalysts with desired 
compositions and dispersion states [42–44]. 

Joule heating strategy, which possesses flash heating and cooling 
process, has been reported as a facile method to load nanoparticles on 
carbon support [45]. The operating principle of the Joule thermal fast 
synthesizer is that high temperature shock can be realized in the process 
of synthesis of transient heating and quenching process of electrical 
pulses [46]. In this work, we used Joule heating method to rapidly 
calcinate the MOF material at 1500 ℃ within 0.5 s. Within very limited 
time, the high temperature made the MOF discomposed and carbonized, 
giving rise to tiny TiO2 crystals that were dispersed within nitrogen 
doped carbon (NC). At the same time, the ultra-small sized Ru nano
particles were simultaneously formed and uniformly fixed on the sup
port, forming a new supported catalyst noted as Ru/TiO2 @NC-J. 
Because of the uniform loading of ultrafine Ru nanoparticles on the large 
surface area support, abundant active sites are exposed. At the same 
time, Strong Metal-Support Interaction (SMSI) creates, which promotes 
electron transfer and thus increases the electrocatalytic HER activity. As 
the result, the overpotential of Ru/TiO2 @NC-J at a current density of 
10 mA cm− 2 in 1.0 M KOH alkaline electrolyte was as low as 11 mV, and 
the Tafel slop was only 39.2 mV dec− 1, which was superior to 
commercially available Pt/C (20 wt%). The as-prepared electrocatalyst 
also showed excellent activity as well as superior durability in acid and 
neutral media. The present result demonstrates a rapid and convenient 
way to prepare cheap and efficient electrocatalysts. 

2. Experimental sections 

2.1. Materials and chemicals 

Tetrabutyl titanate (Ti(OCH2CH2CH2CH3)4, 97%), 2- 

aminoterephthalic acid (H2BDC-NH2, 99%), RuCl3 were obtained from 
Sigma Aldrich. Nafion 117 solution (~5%), Pt/C (20 wt%) were ob
tained from Aladdin Reagent Technology Co., Ltd. Methanol, ethanol, 
NaOH (analytical grade), KOH (analytical grade), and N, N-Dime
thylformamide (DMF, 99.9%) were obtained from the Sinopharm 
Chemical Reagent Co., Ltd. All the reagents were used as received 
without any further purification. 

2.2. Synthesis of Ti-MOF 

Ti-MOF were synthesized via developed hydrothermal method [47]. 
DMF (7.5 mL), methanol (2.5 mL) and 2-aminoterephthalic acid (0.21 g) 
were added to a 30 mL hydrothermal kettle, stirred and evenly dis
solved, then 0.225 mL tetrabutyl titanate was added and continued to 
stir for 5 min. Then, the above solution was put into autoclave and 
heated at 150 ℃ for 12 h. The precipitate was collected, washed and 
dried in a vacuum drying oven at 60 ℃ overnight to obtain yellow 
powder. 

2.3. Synthesis of TiO2 @NC-J 

The precursor, Ti-MOF, were then obtained after collecting, washing 
and drying. Put the powder into a vacuum drying oven and dried 
overnight at 60 ℃ to obtain yellow powder. Finally, the sample was 
calcined 0.5 s in a Joule oven at 1500 ℃ under nitrogen atmosphere. 

2.4. Synthesis of Ru/TiO2 @NC-J 

The 100 mg Ti-MOF powder was dissolved in 20 mL deionized water 
and then ultrasonically dispersed for 5 min. Afterwards, 10 mL of 2 mg/ 
mL of RuCl3 solution was added to the mixture, followed by further 
ultrasonic treatment for 40 min, stirred for 24 h. After collecting, 
washing and drying, put the thoroughly mixed powder (Ru3+/Ti-MOF) 
into a vacuum drying oven and dried overnight at 60 ℃ to obtain yellow 
powder. Finally, the sample was calcined 0.5 s in a Joule oven at 1500 ℃ 
under nitrogen atmosphere. 

2.5. Synthesis of Ru/TiO2 @NC-T 

The 100 mg Ti-MOF powder was dissolved in 20 mL deionized water 
and then ultrasonically dispersed for 5 min. Then 10 mL of 2 mg/mL of 
RuCl3 water solution was added to the mixture, followed by further 
ultrasonic treatment for 40 min, stirred for 24 h. After collecting, 
washing and drying, put the thoroughly mixed powder (Ru3+/Ti-MOF) 
into a vacuum drying oven and dried overnight at 60 ℃ to obtain yellow 
powder. Finally, the sample was calcined in a tube oven at a rate of 2 
degrees per minute to 800 ℃ for 3 h under nitrogen atmosphere to get 
the Ru/TiO2 @NC-T. 

3. Results and discussion 

3.1. Preparation and characterization 

Fig. 1 schematically depicts the synthesis procedure of Ru/TiO2 
@NC-J. Briefly, Ti-MOF was firstly synthesized by hydrothermal reac
tion of 2-amino-terephthalic acid (H2BDC-NH2) and tetra-butyl titanate 
(C16H36O4Ti) [47]. Secondly, with Ti-MOF as the substrate, a certain 
amount of RuCl3 was introduced through adsorption. Especially for 
amine-functionalized MOFs, the free amine groups (-NH2) efficiently 
stabilized metal cations via strong coordination between its lone pair 
electrons and empty D-orbitals of transition metal atom [48], therefore, 
more Ru3+ ions were anchored by NH2 groups. After a rapid shock in the 
Joule furnace at 1500 ℃ under N2 atmosphere, Ru species quickly 
reduced into metallic form. And Ti-MOF was transformed into com
posite that were mainly composed by TiO2 and nitrogen doped carbon 
(NC). Moreover, because of the high temperature shock, the temperature 
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raised and dropped too quickly for the atoms to migrate and aggregate, 
which leaded to even and uniform dispersion of very tiny nanoparticles 
[49]. From the scanning electron microscopy (SEM) images, X-ray 
diffraction (XRD) pattern and Fourier transform infrared (FTIR) spectra 
in Fig. S1, Fig. S2, and Fig. S3, it was clear that the synthesized Ti-MOF 
had a well-defined three-dimensional block structure. 

After a rapid thermal shock, the obtained Ru/TiO2 @NC-J demon
strated a morphology of the similar size and shape but with a much 
rougher surface, indicating the successful loading of Ru particles 
(Fig. 2a). In Fig. 2b, transmission electron microscopy (TEM) also 
showed that the Ti-MOF substrate retained the original morphology 
after calcination but with some darker spots, which was believed to be 
Ru particles. The selective area electron diffraction (SAED) pattern also 
demonstrated the clearly ring of Ru and TiO2 species (Fig. 2b inset), 
which agreed with the HRTEM results (Fig. 2c). From more detailed 

observation, it was clear that the size of TiO2 particle was about 20 nm 
and the size of Ru particle was about 3.5 nm (the inset of Fig. 2c). 
However, the size of Ru in catalyst Ru/TiO2 @NC-T obtained by ordi
nary calcination method is mostly 5.5 nm (Fig. S4). With this extremely 
fast calcination process, the size of ultrafine Ru particles in Ru/TiO2 
@NC-T obtained by high-temperature shock is smaller, so the catalyst 
has more active sites and has a larger active surface area. The lattice 
spacing of 0.32 nm in the high-resolution transmission electron micro
scope (HRTEM) image can be attributed to the (110) crystal plane of the 
rutile phase TiO2. The lattice spacing of 0.21 nm, corresponded to the 
hexagonal Ru (002) plane (Fig. 2c). Moreover, the TEM-EDS (Fig. 2d) 
showed the uniform spatial distribution of C, N, O, Ti and Ru elements in 
Ru/TiO2 @NC-J, suggesting the uniform dispersion of ultrafine Ru 
nanoparticles on the support. 

The XRD pattern (Fig. 3a) further testified that the generated Ru 

Fig. 1. Schematic illustration of the synthesis of Ru/TiO2 @NC-J.  

Fig. 2. (a) SEM image of Ru/TiO2 @NC-J. (b) TEM image of Ru/TiO2 @NC-J. Inset: the corresponding SAED patterns. (c) HRTEM image of Ru/TiO2 @NC-J. Inset: 
the corresponding size distribution of Ru. (d) HAADF-STEM images and corresponding EDX maps of Ru/TiO2 @NC-J. 
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species were basically in metallic form. To be more specific, the 
diffraction peak centered at 43.8◦, belonged to the (110) facet of 
elemental Ru (PDF#06–0663). Rutile phase TiO2 can also be observed, 
which was produced from the calcination of Ti-MOF. In Raman spectra 
(Fig. 3b) the peak centered at 1349 cm− 1 regards to the D-band, which 
was typical in defective or disordered carbon materials, while the peak 
at 1590 cm− 1 referred as G-band related to in-plane vibrations of 
graphitic structures [48]. Compared with the support (TiO2 @NC-J) and 
the ordinary calcined sample (Ru/TiO2 @NC-T), the D peak of Ru/TiO2 
@NC-J enhanced, leading to significant increased ID/IG value. These 
results showed the graphitization degree of carbon component increased 
and more defects produced during high temperature bombardment 
process, which could improve the stability of the catalyst and provide 
more potential active sites [49,50]. And high graphitized C has stronger 
π-π interaction, which was conducive to the rapid transfer of charge 
[51]. And the enhanced defective sites also helped modulate electronic 
structures and surface structures, to optimize the adsorption energies of 
intermediates during catalytic process [52]. 

In addition, the Brunauer-Emmett-Teller (BET) surface area and pore 
structure of the prepared Ru/TiO2 @NC catalyst were calculated from 
N2 adsorption-desorption isotherms in Fig. 3c. Notably, Ru/TiO2 @NC-J 
maintains the highest BET specific surface area of 209.4 m2g− 1 and the 
largest pore volume of 0.21 cm3g− 1 among the pyrolysis products. 
Fig. 3d demonstrated the average pore size was 2–50 nm, testifying the 
mesoporous features of MOFs-derived materials. Thus, the large specific 
surface area and highly porous structure of the catalyst was warranted, 
which was more favorable for the exposure of active sites and the boost 

of mass transport. The detailed comparisons on the specific surface area, 
pore size, and pore volume of all the samples have been listed in 
Table S1. 

As for the X-ray photoelectron spectroscopy (XPS) test, the full sur
vey spectrum in Fig. S5 demonstrated the presence of Ru, Ti, O, N and C 
elements, which further testified the successful synthesis of Ru/TiO2 
@NC-J. In the high-resolution N 1 s XPS spectra (Fig. 4a), the peaks 
located at 403.7 and 400.8 eV were attributed to the oxidized and 
graphitic N, respectively. While the peaks at 398.2 and 396.3 eV were 
assigned to the interstitial N and substitutional N (i.e. Ti-N bond) in the 
TiO2 lattice, respectively [53]. Detailed comparison of the relative 
content of N have been listed in Table S2. Two peaks corresponding to 
Ru0 (3d5/2) and Ru0 (3d3/2) at 280.6 eV and 284.7 eV indicated the 
formation of metallic Ru in the sample (Fig. 4b) [54]. While peaks 
located at 281.7 eV and 285.8 eV indicated the presence of RuO2 
because of the inevitable surface oxidation [27,55,56]. 

As seen in Fig. 4c, Ti4+ had binding energies of 464.3 and 458.6 eV 
attributed to Ti 2p1/2 and Ti 2p3/2, respectively. The peak of about 
462.3 eV between Ti 2p3/2 and Ti 2p1/2 in Fig. 4c was the contribution of 
Ru 3p3/2 because of the partial overlap [57,58]. As the Ti4+ peaks shifted 
toward higher binding energies, indicating that charge transfer occurred 
between the metals Ru and TiO2, leading to the reinforcement of the 
SMSI between the Ru and support. Meantime, the binding energies of O 
1 s redshifted slightly (Fig. 4d), which was because of more oxygen 
vacancies (Ov) in TiO2. Moreover, the intensity of EPR signals (Fig. S6) 
at g = 2.003 related respectively to Ov proved the point above. These Ov 
defects increased electron conductivity and leaded to a better intrinsic 

Fig. 3. (a) The XRD image of Ru/TiO2 @NC-J. (b) Raman spectrum of Ru/TiO2 @NC-J, Ru/TiO2 @NC-T and TiO2 @NC-J. (c) N2 adsorption-desorption isotherm of 
Ru/TiO2 @NC-J, Ru/TiO2 @NC-T and TiO2 @NC-J. (d) BJH pore size distribution of Ru/TiO2 @NC-J, Ru/TiO2 @NC-T and TiO2 @NC-J. 
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HER activity [59]. As the binding energy shifts indicated charge rear
rangement, the MOF derived porous support modulated the electronic 
configuration of the metallic Ru species, which promoted the charge 
transfer between Ru and TiO2. Interestingly, due to the different calci
nation methods, the binding energies of Ru 3d of the Ru/TiO2 @NC-J 
was 0.1 eV larger than that of Ru/TiO2 @NC-T, which strengthen the 
adsorption of oxygen atoms and weaken the O-H bond in water mole
cules, thus improving the electrocatalysis performance. 

As for the C 1 s high-resolution XPS spectra (Fig. S7), the peaks 
centered at 284.7 eV, 285.7 eV, 286.8 eV, and 289.0 eV were assigned 
to C-C, C-N, C––O, and C-C––O bonds, respectively [59,60]. Other 
detailed comparisons of different C contents have also been listed in 
Table S3. The results suggested that the high temperature shock syn
thesis contributed to the graphitization within pyrolysis process, and 
increased the N doping in the carbon matrix. 

3.2. Electrocatalytic HER test of Ru/TiO2 @NC-J 

We carried out a series of experiments of pyrolysis temperature and 
time on electrocatalysts and HER performance. Firstly, we compared the 
performances of the catalysts with different pyrolysis times. 0.5 s is the 
minimum time for the heating equipment. Ru3+/Ti-MOF were calcined 
at 0.5 s, 1 s and 1.5 s respectively at 1500 ℃, and the obtained samples 
were named as Ru/TiO2 @NC-J-1500 ℃− 0.5 s, Ru/TiO2 @NC-J- 
1500 ℃− 1 s and Ru/TiO2 @NC-J-1500 ℃− 1.5 s, respectively. As 
shown in Fig. S8, the size of Ru nanoparticle of Ru/TiO2 @NC-J- 
1500 ℃− 0.5 s, Ru/TiO2 @NC-J-1500 ℃− 1 s and Ru/TiO2 @NC-J- 
1500 ℃− 1.5 s are respectively 3.5 nm, 4.4 nm and 5.0 nm. Long 
calcination time leads to the growth of metal nanoparticles. Larger 
nanoparticle size may decrease the number of active sites and the active 
surface area [61]. As shown in Fig. S9, the overpotentials at a current 
density of 10 mA cm− 2 are 11 mV, 17 mV and 29 mV for Ru/TiO2 
@NC-J-1500 ℃− 0.5 s, Ru/TiO2 @NC-J-1500 ℃− 1 s and Ru/TiO2 

@NC-J-1500 ℃− 1.5 s, respectively. So, Ru/TiO2 @NC-J-1500 ℃−

0.5 s has the best catalytic performance. We believe that the Joule 
heating is a very powerful method that can complete the transformation 
of MOF precursor in 0.5 s. We also compared the performance of cata
lysts with different pyrolysis temperature in different pH solutions. The 
Ru3+/Ti-MOF were calcined at 1000 ℃, 1300 ℃, 1500 ℃, 1700 ℃ and 
2000 ℃, and the obtained samples were named as Ru/TiO2 
@NC-J-1000 ℃, Ru/TiO2 @NC-J-1300 ℃, Ru/TiO2 @NC-J-1500 ℃, 
Ru/TiO2 @NC-J-1700 ℃ and Ru/TiO2 @NC-J-2000 ℃, respectively. 
TEM images of the catalysts Ru/TiO2 @NC-J-1000 ◦C, Ru/TiO2 
@NC-J-1300 ℃, Ru/TiO2 @NC-J-1500 ℃, Ru/TiO2 @NC-J-1700 ℃ 
and Ru/TiO2 @NC-J-2000 ℃ were shown in Fig. S10. It can be observed 
that the metal particles obtained by calcination at 1500 ◦C have the 
smallest size and the most uniform distribution. As shown in Fig. S11, 
the overpotentials at a current density of 10 mA cm− 2 are 30 mV, 
17 mV, 11 mV, 24 mV and 33 mV for Ru/TiO2 @NC-J-1000 ℃, 
Ru/TiO2 @NC-J-1300 ℃, Ru/TiO2 @NC-J-1500 ℃, Ru/TiO2 
@NC-J-1700 ℃ and Ru/TiO2 @NC-J-2000 ℃ in 1.0 M KOH solution, 
respectively. It can be seen that Ru/TiO2 @NC-J-1500 ℃ has the best 
performance of HER in 1.0 M KOH solution. According to the above 
discussion, we chose the calcination method at 1500 ◦C for 0.5 s 

The electrochemical HER catalytic activities of Ru/TiO2 @NC-J, Ru/ 
TiO2 @NC-T and TiO2 @NC-J and commercial Pt/C (20 wt%) were 
compared. As shown in Fig. 5a, among all a-prepared catalysts tested, 
Ru/TiO2 @NC-J showed the best electrocatalytic activity in 1.0 M KOH 
media. It required an overpotential of 11 mV to drive 10 mA cm− 2 

current, only about half of that of Ru/TiO2 @NC-T (Fig. S12a). Obvi
ously, compared with the ordinary calcining method in tube furnace, the 
Ru/TiO2 @NC-J prepared by Joule high temperature rapid bombard
ment showed higher efficiency, which may result from higher degree of 
graphitization and smaller Ru particle size. As shown in Fig. 5b, Ru/TiO2 
@NC-J had an amazing TOF of 8.6 s− 1 at 50 mV, which was 3.3 times 
than that of Pt/C (2.6 s− 1). And at an overpotential of 100 mV, the TOF 

Fig. 4. High-resolution XPS spectra of (a) N 1 s, (b) Ru 3d and C 1 s, (c) Ti 2p, and (d) O 1 s of Ru/TiO2 @NC-J，Ru/TiO2 @NC-T and TiO2 @NC-J.  
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of Ru/TiO2 @NC-J reached 22.0 s− 1, which was also 3.14 times of Pt/C 
(7.0 s− 1). The Tafel slopes of Ru/TiO2 @NC-J is 39.2 mV dec− 1, much 
lower than Pt/C (50.6 mV dec− 1) and Ru/TiO2 @NC-T (46.5 mV dec− 1), 
which implied faster reaction kinetics (Fig. 5c). According to the Tafel 
slopes, HER follows the Volmer− Heyrovsky pathway in alkaline elec
trolytes. Ru has similar electron configuration like Pt. Ru possesses low 
water dissociation energy barrier, leading to better water dissociation 
ability [62]. At the same time, Ru shows a strong oxidizing ability due to 
its wide range of electron-rich characteristics near the Fermi level. This 
electronic environment provides an effective electron transfer path from 
the carrier to the Ru nanoparticle. It is beneficial to weaken the 
adsorption strength of H* and accelerate the release of H2, thereby 
obtaining an effective HER [63]. Next, by extrapolating the Tafel curve 
the exchange current density (J0) of the catalyst was obtained, which 
also indicated the intrinsic kinetics of the charge transfer reaction. In 
Fig. S12b, the J0 of Ru/TiO2 @NC-J reached 3.16 mA cm− 2, which was 
nearly twice of that of Pt/C (1.77 mA cm− 2). Obviously, Ru/TiO2 @NC-J 
had a faster intrinsic HER kinetics. 

To further prove the excellent performance of the Ru/TiO2 @NC-J 
catalyst, we compared it with the catalyst reported in recent years 
(Table S4). It can be seen that the as-prepared catalyst counted as one of 
the best HER catalysts to date. Moreover, the double-layer capacitance 
(Cdl) was calculated via a test of CV curves at different sweep rates. In 
Fig. S13, the Cdl of the Ru/TiO2 @NC-J almost double that of Pt/C, 
suggesting larger Electrochemical Active Surface Area (ECSA). 
Furthermore, electrochemical impedance spectroscopy (EIS) was 
applied to evaluate the electron transfer kinetics of the catalyst during 
the electrocatalysis. As expected, Ru/TiO2 @NC-J had the smallest 
interface contact resistance (Rct) (Fig. 5d). We attributed the reduced Rct 
to the loading of Ru as well as the SMSI interaction, which synergisti
cally increase the interface electron transfer kinetics. 

At the same time, we also tested the stability of the as-developed 
catalyst. After 5000 CV cycles in 1.0 M KOH solution, the catalytic ac
tivity loss of Ru/TiO2 @NC-J was neglectable (Fig. 5e). And the change 

of Ru/TiO2 @NC-J at the current density of 10 mA cm− 2 was small 
within 18 h, which is significantly better than that of commercially 
available Pt/C (Fig. 5f). In particular, the catalyst was able to achieve a 
higher current density at the same overpotential and outperformed 
commercial Pt/C (Fig. S14), which showed great promises for large- 
scale industrial hydrogen production. 

In order to evaluate the catalyst in other working conditions, the HER 
activity of Ru/TiO2 @NC-J in neutral (1.0 M PBS) and acidic 
(0.5 M H2SO4) media were also tested. For comparison, the HER per
formance of Ru/TiO2 @NC-J, Ru/TiO2 @NC-T, TiO2 @NC-J, and Pt/C 
catalysts were also tested using the same method. As shown in Fig. 6a, 
the performance of catalyst Ru/TiO2 @NC-J was much better than that 
of Ru/TiO2 @NC-T, further testifying the superiority of this preparation 
method. The overpotential reached 69 mV at the current density of 
10 mA cm− 2 in 1.0 M PBS. According to Tafel slope curve (Fig. 6b), Ru/ 
TiO2 @NC-J has a lower slope (75.2 mV dec− 1) and a higher reaction 
and electron transfer kinetic. According to the Tafel slopes, HER follows 
the Volmer− Heyrovsky pathway in neutral electrolyte. In neutral elec
trolyte, the Ru/TiO2 @NC-J has high adsorption strength towards the 
H2O molecules. And this can boost the water dissociation into H+ and 
OH− . The dissociated H+ is reduced into H* and eventually produce H2 
[59]. After repeat (5000 CV cycles) or long term (10 h) test in 1.0 M PBS 
solution, the catalytic activity loss of Ru/TiO2 @NC-J was also 
neglectable (Fig. 6c). Its stability was even significantly better than that 
of Pt/C. In 0.5 M H2SO4, the overpotential reached 49 mV at the current 
density of 10 mA cm− 2 (Fig. 6d). The Tafel slope is 52.3 mV dec− 1, 
which is also smaller than that of Ru/TiO2 @NC-T (Fig. 6e). Vol
mer− Tafel pathway is the HER mechanism in acidic electrolytes [59]. In 
acidic electrolyte, Ru sites with rich electron favour the H+ capturing in 
acidic solution and the reduction to H* . Then H* combines with adja
cent H* on the cathode surface to produce H2 [64]. And Ru/TiO2 @NC-J 
also has good stability in an acidic medium (Fig. 6f). 

Ru/TiO2 @NC-J was also reevaluated by SEM, TEM images, XRD 
pattern and Raman spectrum (Fig. S15, S16) after stability test in 

Fig. 5. HER performance in 1.0 M KOH. (a) HER polarization curves of Ru/TiO2 @NC-J, Ru/TiO2 @NC-T and TiO2 @NC-J and Pt/C catalysts. (b) The TOF curves of 
catalyst at different overpotentials. (c) Tafel plots and (d) Nyquist plots of the Ru/TiO2 @NC-J, Ru/TiO2 @NC-T and TiO2 @NC-J. (e) Polarization curves for Ru/TiO2 
@NC-J before and after 5000 cycles. (f) i-t curves of Ru/TiO2 @NC-J and Pt/C. 
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different electrolytes. No obvious changes can be observed, which sug
gested the excellent preservation of the composition and structure of 
Ru/TiO2 @NC-J during the long-term HER process. Furthermore, in 
order to prove the electronic state before and after HER, XPS were 
performed. As exposed in Fig. S17, S18 and S19, the binding energy of 
Ru0 3d exhibits red shift and Ti 2p displays blue shift after the stability 
test in 1.0 M KOH, 0.5 M H2SO4 and 1 M PBS solution. It indicated that 
electron transfer occurred between metal and carrier during the reac
tion, resulting in SMSI effect and slight change of electron cloud density. 
Note that only a slight shift occurred after chronopotentiometry test, 
further proving the excellent stability of Ru/TiO2 @NC-J. 

4. Conclusions 

In conclusion, superfine Ru nanoparticles anchored on TiO2 @ni
trogen-doped carbon composite Ru/TiO2 @NC-J has been developed by 
a super-fast high-temperature shock method for electrocatalytic HER 
performance. The TiO2 @NC support function as hydrolysis dissociation 
and rapid electron transfer. Moreover, the superfine Ru nanoparticles 
can efficiently promote the adsorption/desorption of H intermediate. 
Such unique Ru/TiO2 @NC-J results in prominent electrocatalytic HER 
performance in universal pH range. Especially in 1.0 M KOH solution, 
the overpotential was as low as 11 mV at the current density is 
10 mA cm− 2, which was much better than the 20 wt% Pt /C and most of 
the state-of-art catalysts reported so far. The SMSI between Ru and 
support is active for the excellent stability. This work is the first case of 
superfine Ru nanoparticles anchored on TiO2 @nitrogen-doped carbon 
as a pH-universal HER electrocatalyst via high-temperature shock 
method, which may drive the mass production of efficiently low-cost 
catalyst. 
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